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ABSTRACT 

Foot and mouth disease (FMD) is a highly contagious viral disease affecting cloven-

hoofed domestic and some wild animals.  An A hypothetical outbreak of FMD begun in 

California  was recently estimated to have a national impact of up to $55 billion, mostly 

due to international trade restrictions (Carpenter, O’Brien, Hagerman, & McCarl, 

Carpenter et al.,  2011 ).  Therefore, preparedness for an outbreak is a high priority within 

the livestock industry, and state and federal government. 

We use simulation and a designed experiment to identify robust governmental and 

industrial surveillance response strategies to control the spread of FMD.  A strategy is 

considered robust if it is effective across a number of outbreak scenarios and a variety of 

disease spread characteristics. 

The main contributions of this thesis are:  (1) the development of FMD outbreak 

scenarios across California that can be used in conjunction with a state-of-the-art, animal 

disease simulation model, and (2) the development and analysis of an efficient 

experimental design that allows for the identification of key parameters affecting the 

spread and containment of an FMD outbreak. 

The analysis of over 400,000 simulations in the experimental design indicates two 

key areas for the control of FMD:  (1) surveillance activities at dairy and dairy-like 

premises are a dominant factor in early identification of the disease and increased 

surveillance leads to lower impacts of an outbreak, and (2) fast initial responsiveness 

response and capacity of depopulation resources are also a key factors in controlling an 

FMD outbreak, even when no pre-emptive depopulation strategies are considered. 
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EXECUTIVE SUMMARY 

Foot and mouth disease (FMD) is a highly contagious viral disease affecting 

cloven-hoofed domestic and some wild animals.  Most adult animals recover from the 

disease, but it debilitates them; leading to severely decreased meat and milk production.  

The economic impact on a country with an FMD outbreak can be extensive due to the 

cost of eradicating the virus, the secondary effects to local economies, and the 

international trade impact on all animal products that the country exports.  For example, 

the 2001 outbreak of FMD in the United Kingdom led to the destruction of approximately 

4 million animals at an estimated economic loss of $5 billion to the food and agriculture 

sector, and a comparable amount to the tourism industry (U.S. General Accounting 

Office [GAO], 2002).  Even though the United States has been free of this disease since 

1929, the Executive Office of the President, Office of Science and Technology Policy has 

listed FMD as one of four animal diseases that are “high priority threats” in its Research 

& Development Plan for 2008–2012 (National Science and Technology Council [NSTC], 

2007). 

We study the spread of FMD in California using a specifically designed  

herd-based, disease-spread simulation software package and an efficient design of 

experiment (DOE) to explore a number of “what-if” scenarios of FMD outbreaks in 

California.  The software package, called InterSpread Plus (ISP), has been used 

extensively to model outbreaks of this disease in modern livestock countries including the 

United Kingdom, Republic of Korea, and New Zealand. 

Our research makes two major contributions to the study and modeling of FMD in 

California.  First, we undertake a significant data development effort to use a  

state-of-the-art animal disease simulation, ISP, to analyze potential FMD outbreaks in 

California.  This data will allow future researchers to study alternative scenarios and 

control strategies as they are developed.  Second, we develop an efficient DOE, which 

allows us to explore 26 disease-spread factors and 46 response factors across 8 outbreak 

scenarios, using hundreds of thousands of simulations, as opposed to a naive strategy that  
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would require more than trillions (273).  In this way, we can perform simulation analysis 

of the output to identify the relevant disease and control factors for the spread of FMD in 

California  

The two major results for the control of FMD, as indicated by our analysis, are: 

 The most important disease surveillance is done at dairy and dairy-like 

facilities, or premises.  We see that the surveillance parameters of these 

premises are the dominant control factors in both decreasing the detection 

time and decreasing the size of the outbreak.  This is likely because these 

types of premises usually have personnel on staff who have daily contact 

with their animals and because the clinical signs of infection in cattle are 

generally easier to detect than in other species.  These characteristics lead 

to decreased time until detection, which leads to quicker implementation 

of controls and smaller outbreaks.  Continued research into how to make 

this type of surveillance as efficient as possible could have a significant 

impact on the size of an outbreak if it ever occurs in California. 

 The size and responsiveness of depopulation resources play a significant 

role in decreasing the size of outbreaks.  This is surprising, because our 

models do not use preemptive depopulation.  Instead, the model only 

depopulates detected premises.  The analysis confirmed that depopulating 

infected premises quickly and significantly limited the spread of the 

disease.  This requires the availability of large amounts of resources in a 

timely manner.  The analysis suggests that if the state does not plan on 

using preemptive depopulation, then depopulation resources should be 

readily available on very short notice to facilitate the rapid control of an 

FMD outbreak. 
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I. INTRODUCTION 

A. PURPOSE 

Foot and mouth disease (FMD) is a highly contagious viral disease affecting 

cloven-hoofed domestic and some wild animals.  The United States has been free of this 

disease since 1929, but preparedness for an outbreak is a high priority within the 

livestock industry, and state and federal government.  The Executive Office of the 

President, Office of Science and Technology Policy has listed FMD as one of four animal 

diseases that are “high priority threats” in its Research & Development Plan for 2008–

2012 (National Science and Technology Council [NSTC], 2007, p. 5).  This document 

goes on to state that: 

An incursion of FMD within U.S. borders could result in severe disruption 
of the dairy, cattle, and swine industries and allied sectors, the loss of 
export markets, and stop movement restrictions that would create 
significant disruption to the national economy (including transportation 
systems, travel, and consumer confidence). 

FMD is a top priority for the state of California in particular.  According to the 

2010 Census of Agriculture, California is ranked #1 in dairy production and #4 in beef 

production in the United States.  The combined market value of these two industries is 

$9.1 billion annually (United States Department of Agriculture National Agricultural 

Statistics Service [NASS], 2010).  An outbreak of FMD is a large potential threat to these 

industries in terms of both their health and economic productivity (Hagerman, McCarl, 

Carpenter, & O’Brien, 2009).  The California Department of Food and Agriculture 

(CDFA) lists FMD as one of two animal diseases that are “potential emergencies” within 

the state.  The CDFA’s Animal Health and Food Safety Services Division (AHFSS) 

maintains several websites devoted to the disease, including general information about 

the disease, livestock producer guides to preventing and reporting suspected occurrences 

of FMD, and emergency preparedness guides in case of an outbreak. 

Because the disease spreads so quickly, authorities tasked with controlling the 

outbreak must move aggressively to implement control measures to stop its geographic 

expansion.  What measures they implement and how they are implemented can have 
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tremendous impacts on both local and state economies.  For example, if movement 

restrictions are applied to too small an area, the disease may spread outside of the 

controlled area and cause a larger outbreak.  If, however, they are applied to an overly 

large area, it may cause undue collateral damage because all industries in those controlled 

areas suffer economic hardship either directly (e.g., to farm revenue due to depopulation 

of infected premises), or indirectly (e.g., to small business revenue due to movement 

restrictions). 

Our research uses simulation and a designed experiment to attempt to determine 

robust governmental and industrial surveillance and response strategies across a number 

of outbreak-starting scenarios and considers a variety of disease-spread parameters.  We 

hope to provide insight to policy makers so that they can be prepared if, and when, an 

outbreak occurs in California. 

B. BACKGROUND 

FMD is extremely contagious and difficult to control.  Its most significant impact 

is generally on cattle and swine, although it also affects sheep, goats, deer, and several 

other, mostly cloven-hoofed, animals.  The virus can be spread by animals, people, 

inanimate objects, or by aerosol.  It is a moderately robust virus that can persist for weeks 

or months given neutral pH and favorable environmental conditions.  There are seven 

distinct serotypes of the virus along with many more subtypes of each serotype.  Any 

vaccine used must be specific to the type and subtype of the virus in order to be most 

effective.  The symptoms of the disease vary in severity with serotype and species 

infected, but FMD is generally characterized by a fever and painful blister-like lesions in 

the mouth, on the tongue and lips, between the hooves, and on the teats of an infected 

animal.  Most adult animals recover from the disease, but it debilitates them, which leads 

to severely decreased meat and milk production.  FMD is not zoonotic, which means that 

it is not transmittable to humans under natural conditions; however, it does indirectly 

affect the health of nearby human populations through increased incidence of clinical  
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depression, posttraumatic stress, and suicides due to the emotional and economic impacts 

of rapid and large-scale depopulation of animals that is sometimes needed to control 

historic outbreaks (United States Animal Health Association (USAHA), 2008). 

The economic impact on a country with an FMD outbreak can be extensive due to 

the cost of eradicating the virus, the secondary effects to local economies, and the 

international trade impact on animal product exports.  The trade impacts could be 

particularly expensive for the United States because all nonpasteurized animal products 

for the entire country would be restricted under international trade rules.  Therefore, an 

outbreak of FMD in California would impact non-infected states such as Iowa and 

Missouri, where there is a large pork products exporting industry.  The United States 

(U.S.) has not had an FMD outbreak since 1929, but a recent study funded by the 

Department of Homeland Security estimated that an outbreak begun in California could 

have a national impact of up to $55 billion if the disease was not detected for 21 days, 

which was the detection delay in the United Kingdom (U.K.) in 2001 (Carpenter et al., 

2011).  That outbreak of FMD in the U.K. led to the destruction of approximately  

4 million animals, at an estimated economic loss of $5 billion to the food and agriculture 

sector, and a comparable amount to the tourism industry (U.S. General Accounting 

Office [GAO], 2002). 

C. CURRENT PREVENTION AND RESPONSE STRATEGIES AGAINST 
FMD 

Mainly due to the potential economic impact of FMD on the country, the U.S. 

government has developed a plan to prevent and control (if necessary) an outbreak of this 

disease.  This plan can be divided into several parts:  prevention, detection, selection of a 

control strategy, and management of the control strategy. 

1. Prevention 

Outbreaks of FMD are constantly occurring globally and the disease is endemic in 

many parts of the world (see Figure 1).  The USDA is the lead government organization 

charged with protecting the country from foreign animal diseases, and it utilizes a 

multilayered defense.  The first layer is outside of our borders, where they conduct 
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multinational outbreak response exercises, monitor reported outbreaks, provide monetary 

and expert resources to affected countries, and help to set up FMD control zones in 

regions such as Central and South America.  The USDA’s next layer is at the national 

borders, where it works alongside U.S. Customs to implement preventative measures for 

international passenger and cargo traffic, livestock and animal product imports, 

international mail, and garbage from international carriers.  U.S. efforts to protect itself 

have been effective for over 80 years, but the magnitude and volume of legal and illegal 

people and products crossing our borders means that the country is still vulnerable to  

the disease. 

 

Figure 1.   FMD outbreaks after 2005 (OIE, 2012) 

2. Detection 

If FMD is detected within the U.S., the federal government, as well as most state 

governments, has developed and tested emergency response plans.  At the federal level, 

the Federal Emergency Management Agency (FEMA) would coordinate the response and 

the USDA would be the lead agency.  Some of the more than 20 federal agencies 

involved would be the Department of Defense (DoD) to provide personnel, equipment 

and transport; the Environmental Protection Agency (EPA) to advise on the disposal of  
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animal carcasses; and the National Park Service to advise on susceptible wildlife 

management.  Since this thesis applies specifically to an outbreak of FMD in California, 

we focus on California’s, as well as the USDA’s, response plans. 

The initial indication of an FMD outbreak will most likely come from a private 

veterinarian called by, or on the staff of, a livestock owner who notices unusual patterns 

of sick animals or significant production losses.  The veterinarian is required by law to 

report a suspected case of FMD to the CDFA.  A government agency, such as the Food 

and Drug Administration, the USDA, or U.S. Customs may also originate a report.  Upon 

notification, the CDFA contacts the USDA and dispatches a Foreign Animal Disease 

Diagnostician (FADD) to collect samples and classify the diagnosis as “unlikely,” 

“possible,” or “highly likely.”  For the first two scenarios, the FADD orders the livestock 

facility to stop all animal movement until lab results rule out FMD.  In the event of a 

diagnosis of “highly likely” by the FADD, the State Veterinarian places a State 

Quarantine on the facility, establishes an appropriate movement control area around the 

premises, and directs that all contacts to the facility be traced back to an appropriate point 

in time.  The FADD then works with the facility to ensure that proper biosecurity 

measures are implemented.  In all three scenarios, the FADD sends the sample to an 

approved National Animal Health Laboratory Network (NAHLN) lab for further 

evaluation, with the conformational diagnosis being made by the Federal Foreign Animal 

Disease Diagnostic Laboratory (FADDL) at Plum Island, New York. 

3. Selection of a Control Strategy 

Once FMD is confirmed by USDA, the CDFA and USDA select response 

strategies to use within the control areas.  These responses could include one of or a 

combination of the following: 

 Stamping-Out, which would depopulate all infected premises, contact 

premises, and at-risk susceptible animals;  
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 Stamping-Out with Emergency Vaccination to Slaughter, which modifies 

the Stamping-Out response by vaccinating at-risk susceptible animals 

prior to slaughtering or depopulating them;  

 Stamping-Out with Emergency Vaccination to Live, which is the same as 

Stamping-Out with Emergency Vaccination to Slaughter except that the 

vaccinated animals would be allowed to live out their useful lives; or,  

 Emergency Vaccination without Stamping-Out, which is highly unlikely to 

be used during an initial outbreak, but may be used if the disease becomes 

widespread and resources to stamp-out do not exist. 

The selection of one or a combination of these responses is based on the scale and 

circumstances of the outbreak.  For example, Stamping-Out is most appropriate to a  

well-contained region where the probability of spreading beyond the region is low and 

the resources to depopulate and dispose of the animals are readily available.  Whereas, 

Stamping-Out with Emergency Vaccination to Live may be most appropriate where 

public opinion is opposed to slaughtering uninfected animals, or where there is a need to 

protect high value genetic stock, facilities that have long-lived production animals, or a 

high density population of high risk susceptible animals. 

4. Management of the Control Strategy 

The USDA has several designations for specific locations in the event of an FMD 

outbreak in order to better manage the response to the outbreak.  The responses listed 

above may be used at any of these designated locations.  Premises are the smallest 

designation and identify, among others: 

 Infected Premises (IP), where a presumptive positive or confirmed 

positive case exists; 

 Contact Premises (CP), where susceptible animals may have been 

exposed either directly or indirectly to FMD;  

 Suspect Premises (SP), which is under investigation due to the presence of 

susceptible animals reported to have clinical symptoms similar to FMD; 
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 At-Risk Premises (ARP), which have susceptible animals, but none of 

those susceptible animals have clinical signs compatible with FMD; 

 Monitored Premises (MP), which objectively demonstrate that they are not 

an Infected Premises, Contact Premises, or Suspect Premises; 

 Free Premises (FP), which are outside of a Control Area and not a 

Contact or Suspect Premises; or 

 Vaccinated Premises (VP), where emergency vaccination has been 

performed.  This may be a secondary premises designation. 

Zones and Areas may surround premises, other zones, or locations where 

vaccination is taking place.  These include: 

 an Infected Zone (IZ), which surrounds Infected Premises; 

 a Buffer Zone (BZ), which surrounds an Infected Zone or Contact 

Premises; 

 a Control Area (CA), which includes the IZ and BZ; 

 a Surveillance Zone (SZ), which surrounds the Control Area; 

 a Vaccination Zone (VZ), which surrounds areas conducting vaccination; 

and 

 a Free Area, which is an area not included in the CA. 

The USDA has stated the minimum sizes of the zones/areas as well as the factors 

that should be used in determining that size.  Examples of zones/areas and their minimum 

sizes are shown in Figure 2 and Table 1.  Examples of the factors that help to determine 

the actual zone/area sizes include:  jurisdictional areas, physical boundaries, premises’ 

characteristics, environmental conditions, and premises biosecurity status (USDA, 2011). 
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Figure 2.   Examples of zones, areas, and premises (From USDA, 2011) 

Table 1.   Minimum sizes of zones and areas (From USDA, 2011) 

The placement of zones and areas can have a major impact on the resource 

requirements needed to control an FMD outbreak.  Large control areas have a higher 

certainty that all of the IPs are contained in the area and a lower probability that the virus 

will spread outside of the control area.  However, they will also be more resource intense, 

have more premises to manage, and have a larger negative economic impact to normal 

business operations of uninfected premises in the zone.  The opposite characteristics will 

be expected of smaller control areas (USDA, 2011). 

Zone/Area Minimum Size 
Infected Zone (IZ) At least 3 km beyond the perimeters of Infected Premises 

(IP) 
Buffer Zone (BZ) At least 7 km beyond the perimeter of IZ 
Control Area (CA) At least 10 km beyond the perimeter of the closest IP (sum 

of the IZ and BZ) 
Surveillance Zone (SZ) At least 10 km beyond the perimeter of the CA 
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D. LITERATURE REVIEW 

FMD is well documented and has been reported in the literature since 1546 

(Knowles, 1990).  In light of this, we will focus this literature review on studies 

conducted to define disease-spread characteristics, studies that focus on an outbreak of 

FMD in California, and studies that use InterSpread Plus (ISP), the simulation software 

package we have chosen to use in our analysis of FMD spread. 

The United States Animal Health Association’s “Gray Book” (USAHA, 2008) 

provides a general overview of FMD, many of the disease-spread characteristics, as well 

as some of the strategies to control the spread.  It is written for an audience of 

veterinarians and covers many foreign animal diseases.  Mardones, Perez, Sanchez, 

Alkhamis, and Carpenter (2010) discuss the infectiousness durations for various 

susceptible species and attempt to parameterize them for use in simulation models.  

Sutmoller, Barteling, Olascoaga, and Sumption (2003) provide great detail on a number 

of topics covering FMD, including its epidemiology, vaccines, and control strategies.  

McLaws and Ribble (2007) study the relationship between outbreak size and early 

detection during outbreaks between 1992 and 2003, and find that there is no direct 

relationship.  They attribute the movement of animals through markets as being the most 

critical factor in the size of an outbreak. 

There have been several studies that simulate the spread of FMD in California, 

although most are limited to the Central Valley, where many of the large dairy facilities 

are located.  Pineda-Krch, O’Brien, Thunes, and Carpenter (2010), however, conduct 

simulations of several areas of the state in places where reports of hunters killing feral 

hogs are high.  Their results show that the duration and size of outbreaks are impacted 

greatly by where the outbreak occurred and on what type of facility, but they also find 

that a statewide movement ban decreases both of those measures consistently across 

location and type of facility infected.  Bates, Thurmond, and Carpenter (2001) send 

surveys to livestock producers and others who would regularly visit livestock premises 

(e.g., veterinarians and hoof trimmers) in three central California counties in order to 

determine direct and indirect contact rates and movement distances in the study area.  

Direct contacts describe animal movement between two locations, while indirect contacts 
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describe the movement of humans, vehicles, equipment, or other mechanical means of 

spreading the virus between two locations.  We use the results of this study extensively in 

this thesis to parameterize the network movement of the virus.  Other California studies 

are by Kobayashi, Carpenter, Dickey, and Howitt (2007) and Carpenter, O’Brien, 

Hagerman, and McCarl (2011), which simulate the economic impact of an outbreak in 

California, and Carpenter, Christiansen, Dickey, Thunes, and Hullinger (2007), which 

determine the impact of an outbreak begun at the 2005 California State Fair. 

For this thesis, we use ISP as the simulation software package for our experiments 

(Massey University, 2008).  Initially developed for FMD at Massey University in  

New Zealand, ISP can be used to model any contagious disease and has been used 

extensively to model animal disease outbreaks before, during, and after they occurred in 

modern livestock countries including the United Kingdom, South Korea, and  

New Zealand.  It is a “herd-based” model, where the unit spreading the disease is a farm 

or other livestock premises instead of an individual animal, and is stochastic, meaning 

that it includes randomness while modeling the disease spread. 

The most prominent use of ISP was during the FMD outbreak in the U.K. in 2001.  

In writing about that outbreak, Keeling (2005) acknowledges the flexibility and modeling 

capability of ISP, but also states that it can be confusing and relies heavily on expert 

opinion for its parameterization.  Yoon et al., (2006) utilize ISP to model alternative 

control strategies to those that were used during the 2002 outbreak of FMD in the 

Republic of Korea.  They find that several proposed strategies could have reduced both 

the size and variability of the predicted number of infected farms.  Dubé (2009) and 

Kostova-Vassilevska, Bates, Thurmond, and Carpenter (2004) provide descriptions of 

ISP in their studies of FMD models. 

E. RESEARCH QUESTIONS 

The main topic of this thesis will be to determine the best sizes of these areas and 

zones for the control of an FMD outbreak, while minimizing the negative impacts of 

those controls on the livestock industry in California.  We decompose the main topic into  
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more specific questions in order to focus our research.  We believe that by answering the 

following research questions, we can contribute to the body of knowledge of FMD spread 

and its control in California. 

 Which disease spread parameters, such as the probability of disease 

transmission from a market or the rate at which animals are moved off of a 

large dairy farm, are most important to the simulation of an outbreak of 

FMD in California? 

 In response to a variety of outbreak scenarios, what are the optimal sizes 

of Control Areas and Surveillance Zones that efficiently eradicate the 

disease and also minimize the economic impact on the livestock industry? 

 How often should livestock facilities be screened for FMD prior to and 

during an outbreak? 

 Which are the most dangerous outbreak scenarios modeled in this thesis 

for California? 

This thesis makes several contributions from our research to the study and 

modeling of FMD in California. 

 We undertake a significant data development effort to use a state-of-the-

art animal disease simulation, ISP, to analyze potential FMD outbreaks in 

California.  This data will also be available to future researchers. 

 We develop an efficient design of experiment that allows us to simulate 

hundreds of thousands of possible FMD outbreaks in a relatively short 

amount of time.  Then, we perform simulation analysis to identify key 

parameters affecting the spread and containment of an FMD outbreak. 

 Finally, we develop and analyze eight specific outbreak scenarios relevant 

to FMD in California. 

The ultimate objective is to provide insight into the effectiveness of various 

control strategies for application in policy decisions. 
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II. METHODOLOGY AND DATA DEVELOPMENT 

We use a simulation model and a designed experiment to evaluate robust 

governmental response strategies across a number of outbreak scenarios and a variety of 

disease parameters.  We seek strategies that minimize the overall negative impact of the 

disease, whether that impact is caused by the disease itself or by the implemented disease 

control strategy.  To that end, we divide this chapter into several sections.  In Section A, 

we discuss the general usage of simulation to model FMD, some of the simulation 

software packages considered, and finally our choice of a software package.  In  

Section B, we describe the dataset we received to input into the software, and how we 

interpret and modify this dataset to be able to input it into the software.  In Section C, we 

describe the parameters used within the software to model the outbreak and its control, as 

well as the initial infection scenarios we developed.  In Section D, we show the results of 

the initial plausibility testing of our model.  Finally, in Section E, we describe the purpose 

and development of our experimental design and the measures we use to evaluate the 

effectiveness, robustness, and impact of various control strategies on the outbreak and the 

livestock industry in California.  In our research, we use the term “farm” to describe the 

location where a group of animals is primarily housed and cared for on a permanent or 

semi permanent basis and “premises” to describe locations that could be farms or other 

livestock premises, such as markets or sales yards. 

A. SIMULATION MODELLING OF FOOT AND MOUTH DISEASE (FMD) 

1. Why Model? 

Simulation modeling is used extensively to model FMD.  Roger Morris (2008, 

slide 2) of Massey University lists the objectives of modeling a disease: 

 To understand complex biological processes, and identify key features 

 To test a biological hypothesis 

 To predict the effect of interventions on occurrence of a disease 

 To compare these predictions with reality after the event 

 To guide difficult (e.g., nonrepeatable) management decisions 
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Our simulation will focus on the third and fifth of these as we seek to answer the research 

questions given in Chapter I, Section E. 

2. Choosing a Simulation Software Package or Simulation Model 

The choice of a model or software package to conduct the simulation is important 

because the use of a reputable software package enables us to have better confidence in 

the model’s stability, verification, and validation, and thus the likelihood of producing a 

useful output.  This is especially important when considering that we seek to inform 

policy decisions through the use of our model.  In the next few paragraphs, we describe 

some of the current models and software packages used and our choice for the purposes 

of this project and its characteristics. 

Several models are currently in use to simulate the outbreak of livestock disease.  

In addition to ISP, we also considered AusSpread (Garner & Beckett, 2005) and the 

North American Animal Disease Spread Model (NAADSM) (Harvey et al., 2007).  Both 

are stochastic state transition models similar to ISP, but AusSpread is run using a 

Geographic Information System (GIS) called MapInfo.  This allows the model output to 

be displayed on detailed maps.  NAADSM is a stand-alone package that is easier to 

automate, but does not display the output information as well.  Both are spatial in that 

they are able to model the proximity between livestock premises. 

In 2005, AusSpread, ISP, and NAADSM were compared at a workshop on FMD 

modeling and policy development by the Quadrilateral (QUADS) countries (Australia, 

Canada, New Zealand, and the United States).  The QUADS compared the results of 

these models, using several FMD scenarios.  Even though AusSpread and ISP are able to 

explicitly model the network spread of FMD, while NAADSM is not—although there are 

methods within that model to at least partially account for network spread  

(Dubé, 2009)—the results were similar.  Although there were statistically significant 

differences between the outputs of the three models for a given outbreak scenario, the 

researchers in attendance believed that any decisions based on the output of each model 

would not have differed (Dubé et al., 2007).  Ultimately, we chose to use ISP because it  
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is a well-known and well-used software package that is able to model the spatial, 

temporal, and network spread of FMD, and is easily automated to run on multiple 

networked computers.  The latter is important to the use of an experimental design. 

3. Characteristics of the Chosen Model 

ISP is a stochastic, state-transition model where the premises are in one of several 

states at any time.  Examples of these states are:  susceptible to infection, infected with 

the disease, or immune to the disease.  The software user is also allowed to define 

additional states within the model, such as whether the premises are in a control area or a 

vaccination zone.  Premises may be in multiple states at one time (see Figure 3).  There 

are constraints on the allowable transitions from one state to another.  For example, in 

order for premises to move from “in Vaccination Zone” to “Vaccinated,” a “Vaccination 

Resource” must be available to vaccinate the premises.  Having an available Vaccination 

Resource would be called a “trigger” for this state transition.  A table with a mapping of 

all of the state transitions used in this model and their triggers is included in Table 2.  ISP 

separately represents many transmission processes, disease characteristics, and control 

methods in both space and time.  All of these processes and characteristics help 

determine what state premises are in at a particular point in time.  We provide details of 

these processes in Section C and an overview in Figure 4. 

 

Figure 3.   States used in the model 
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Table 2.   The state trigger matrix.  This matrix shows which triggers allow premises to 
move into a new state.  Depending on the states involved, the new state may be in 
addition to or a replacement of the original state.  For example, the only way that 
a farm can move into the state “In Control Area” is by an infected premises being 
detected within the control area, outside the radius distance from the farm.  In this 

example, the farm described would retain the state “Infected” and have an 
additional state of “In Control Area.” 
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Figure 4.   The transmission processes, disease characteristics, and control methods 
used in our simulation.  Notice that some overlap exists between 
“Transmission Processes” and “Disease Characteristics.”  Some 

parameters listed under “Movements” are actually characteristics of the 
disease. 
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B. DATA DESCRIPTION 

In this section, we describe the inputs required by the ISP software.  Specifically, 

we describe the dataset acquired for use in our modeling and our procedure to interpret 

and modify it for use by ISP.   

1. Description of the Dataset 

Although CDFA maintains careful statistics on the location and sizes of 

individual farms in California, such information is proprietary and not available to the 

public for modeling or analysis.  The dataset we use in this thesis is described in Melius, 

Robertson, and Hullinger (2006) and includes 25,655 premises locations organized into 

the seven columns described below.  A sample from the original data is shown in Table 3.  

The data were developed from publicly available, county-level, aggregated statistics of 

livestock premises provided by the National Agricultural Statistics Service (NASS) 

(NASS, 2010).  As such, they are an approximation of the locations, sizes, animal types, 

and production types of the livestock premises in the state of California.  The location 

coordinates shown are heterogeneous random locations, selected based on a weighting 

scheme using the altitude, flatness, human population, and land use of an area.  The size 

of the premises is selected by uniformly varying the size according to premises type so 

that the average size of each premises type is preserved for each county (Hullinger, 

2012).  We interpreted the original data as described below: 

 Premises:  a concatenation of the premises type name and the unique 

identifier for each premise. 

 ID:  an integer representing a unique identifier for each premise (same 

integer as the unique identifier in “Premises”). 

 Type:  a numeric code for the type of premises.  Included in the data were 

26 of these codes.  Premises populated with cattle are assigned codes 

between 1 and 99; those populated with swine are assigned codes between 

100 and 199; those populated with sheep are assigned codes between  

200 and 299; and those populated with goats are assigned codes between 

300 and 399.  Additionally, code 511 indicates a cattle market and code 



 19

512 indicates a swine market.  We give a complete listing of the type of 

codes used in the original data in Table 4. 

 Size:  an integer designating the number of animals on the premises.  We 

assume that only one type of animal is on each of the premises. 

 FIPS:  the Federal Information Processing Standard (FIPS) code for the 

state and county in which the premise is located. 

 Lat:  Latitude of the centroid of the randomized premise location. 

 Long:  Longitude of the centroid of the randomized premise location. 

Table 3.   A sample of the original data provided by Lawrence Livermore National 
Laboratory (LLNL)  

Premises ID Type Size FIPS Lat Long 

Dairy(L):0 0 33
 

940 
6115 39.01372910 -121.5098953

Dairy(L):1 1 33
 

1,379 
6115 39.29288864 -121.5932312

Dairy(L):2 2 33
 

1,819 
6115 39.17738724 -121.4760590

Dairy(L):3 3 33
 

2,258 
6115 39.26313400 -121.5667267

Stocker(S):
4 

4 61           12 6115 39.10063934 -121.4598846

Stocker(S):
5 

5 61           15 6115 39.29784775 -121.5664749
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Table 4.   Descriptive Statistics of the Data by Premises Type.  Premises column includes 
the following codes:  B-Backyard, S-Small, M-Medium, L-Large.  A description 

of the development of this dataset is found in NASS (2012). 

 

Premises Species
Type 
Code

Total Animals 
of Type

 No. of 
Premises 

Min No. 
Animals

Max No. 
Animals

Avg No. 
Animals

StdDev of 
Size

Beef(B) cattle 24 44,396            5,673     1          10          7.826         1.39          
Dairy(S) cattle 31 7,243              103        13        174        70.320        43.35         
Dairy(M) cattle 32 26,900            103        202       495        261.165      58.87         
Dairy(L) cattle 33 2,649,565       1,526     506       7,458     1,736.281   1,057.47    
Dairy(B) cattle 34 1,518              433        1          9            3.506         1.85          
CowCalf(S) cattle 41 458,635          4,877     10        473        94.040        61.83         
CowCalf(L) cattle 43 423,605          237        521       75,512   1,787.363   5,424.75    
Feedlot(S) cattle 51 7,965              95          11        381        83.842        81.28         
Feedlot(L) cattle 53 563,073          30          1,102    49,667   18,769.100 17,135.79  
Stocker(S) cattle 61 199,791          1,952     11        496        102.352      89.49         
Stocker(L) cattle 63 175,339          139        212       18,933   1,261.432   2,058.68    
DCalfRanch(L) cattle 73 576,634          44          1,314    34,276   13,105.318 9,070.17    
Swine(B) swine 114 5,287              1,203     1          16          4.395         2.33          
SwineFWean(S) swine 121 1,653              15          37        426        110.200      100.37       
SwineFinish(S) swine 131 4,904              49          31        507        100.082      92.08         
SwineFFeeder(S) swine 151 2,267              24          31        426        94.458        84.84         
SwineFFeeder(L) swine 153 23,840            2            11,920  11,920   11,920.000 N/A
SwineFarFin(S) swine 161 8,371              87          29        552        96.218        94.19         
SwineFarFin(L) swine 163 107,280          9            8,280    15,560   11,920.000 2,573.87    
Sheep(S) sheep 211 94,524            1,092     26        375        86.560        51.07         
Sheep(L) sheep 213 474,764          78          1,365    33,178   6,086.718   4,639.32    
Sheep(B) sheep 214 26,088            2,893     1          23          9.018         4.87          
Goats goat 310 104,596          2,296     18        244        45.556        31.17         
Goats(B) goat 314 26,175            2,689     1          19          9.734         5.07          
Market(Cattle) cattle 511 2250 15 150 150 150 N/A
Market(Swine) swine 512 100 1 100 100 100 N/A
Grand Total 6,016,763    25,665 1         75,512 234.435   1,394.04  

2. Our Procedure to Interpret and Modify the Dataset for Use in ISP 

Each run of an ISP model requires several inputs.  These take the form of text 

files and include: 

 a “Farm File” that describes the premises in the study area; 

 a “Contact Location” File that describes the markets and other gathering 

places of animals from multiple locations; 

 an “Epidemic History File” that lists the premises which are in the 

“infected” and/or “detected” states at the beginning of the simulation; and 
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 a “Zone File” listing the boundaries of the area of study in the form of a 

series of coordinates forming a polygon. 

We describe these inputs in more detail in the following paragraphs. 

a. The Farm File 

This file is essential to ISP because it describes in detail the area to be 

simulated.  At a minimum, it must include: 

 Cartesian coordinates defining where susceptible animals are located (can 

be in the form of a centroid or polygon, but here we use the centroid of the 

premises); 

 the number of  animals located at each of the premises; 

 and a premises type for each location (e.g., large dairy, small cattle 

feedlot, backyard swine premises). 

An arbitrary number of additional columns of user-defined data can also 

be included in the farm file to further describe the modeling environment.  Next, we 

describe the development of our farm file. 

In order to develop this farm file, we create a computer program, or 

“script,”  written in the R Programming Language (R Development Core Team, 2012) to 

manipulate the data from the format described above to a text file for import into ISP.  

Our first task is to transform the latitude/longitude coordinates provided in our dataset to 

integer Cartesian coordinates, as required by ISP.  We first add a “zone” column to each 

of the premises in the farm file and populate it with an integer between 1 and 6, which 

corresponds to the correct California Coordinate System (CCS83) zone to use when 

transforming the latitude/longitude columns to northerly/easterly coordinates.  The units 

of the CCS83 coordinate systems are meters.  The correct zone is found by mapping the 

FIPS code to the CCS83 zone listed in California Department of Transportation 

(Caltrans) (1993).  We then use R script, which incorporates the R package “rgdal” 

(Stevenson, 2012) as a template to transform the data from latitude/longitude to 

northerly/easterly coordinates.  We are unable to use the correct zone for each FIPS code 

while keeping the correct spatial relationship between the zones.  So, we use Zone 3 as 
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the projection for all of the premises locations.  From our initial analysis of the distortion 

this causes between premises in the far north and far south of the state, it appears that the 

incorrect zone usage will not adversely affect our analysis of the simulation. 

Next, we split the “Size” column to show the number of each animal 

species on each premises.  We add five additional columns to indicate species (cattle, 

swine, sheep, goat, and other) and initially populate them with zeros.  We develop a 

mapping table between the “type” column and a “species” column based on the type 

described by the “Premises” column in the original data, and use an R script to copy the 

number in the “Size” column to the appropriate species column. 

Finally, we create another R script to determine the distance between each 

of the premises and all other premises in the dataset.  This allows us to add six columns 

to the data to describe the density of premises and animals within a 3-, 10-, and  

20-kilometer (km) radii from each of the premises in the dataset.  We will use these 

columns to help determine the impact of premises density and animal density on how the 

disease spreads within California.  These computations are subject to the fact that the 

locations given in the dataset are generated by an algorithm and are not the actual 

locations of premises.  However, we assume that the generated data is representative of 

the true locations enough to use these densities in our analysis.  We show the 

distributions of the densities of premises and animals within the state in Figure 5.  We 

show similar information in Figures 6 and 7, but display it so that the reader can visualize 

where the densely populated areas are located in California.  We then show a sample of 

the farm file in its final form in Table 5 and describe its columns below. 

 id:  unique identifier (same as original data) 

 type:  numerical code for premises type (same as original data) 

 FIPS:  the FIPS code for the state and county in which the premises are 

located (same as original data) 

 cattle:  number of cattle on the premises 

 swine:  number of swine on the premises 

 sheep:  number of sheep on the premises 

 goat:  number of goats on the premises 
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 other:  number of other animals on the premises (all zeros for this dataset) 

 premises:  description of the type of premises.  We develop this column 

from the “Premises” column in the original dataset.  After splitting the 

original column into two columns, a string representing the premises type 

name and an integer representing the unique identifier, we remove the 

unique identifier column because it is a duplicate of “id.” 

 premises_3k:  number of other premises within a 3-km radius of the given 

premises 

 animal_3k:  number of animals (all species) within a 3-km radius of the 

given premises 

 premises_10k:  number of other premises within a 3-km radius of the 

given premises 

 animal_10k:  number of animals (all species) within a 3-km radius of the 

given premises 

 premises_20k:  number of other premises within a 3-km radius of the 

given premises 

 animal_20k:  number of animals (all species) within a 3-km radius of the 

given premises 

 xcoord:  easterly coordinate (transformed from longitude using a CCS83 

Zone 3 projection) 

 ycoord:  northerly coordinate (transformed from latitude using a CCS83 

Zone 3 projection) 
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Figure 5.   Histograms and descriptive statistics of the within 20-km densities of 
premises and animals.  The histograms show the proportion of premises 

(y-axis) that have premises or animal densities of the amount shown along 
the x-axis.  One interesting comparison between these two densities is how 
differently they are shaped.  Premises densities are much more uniformly 
distributed between densities of 0 and 525 premises and the distribution is 
bimodal.  Animal densities, however, are highly skewed, with almost 50% 

of the premises having densities of less than 25,000 animals. 
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Figure 6.   Contour plot showing the density of premises within 20 km of each 
premise in the dataset.  Contour lines indicate that premises within the 

contour have a 20-km premise density of at least the amount indicated in 
the legend. 
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Figure 7.   Contour plot showing the density of animals within 20 km of each of the 
premises in the dataset.  Contrast the location of the animal densities in 
this plot with the premises densities in Figure 6 and notice how the most 
premises-dense areas do not necessarily correspond to the most animal-

dense areas.  For example, areas in Northern California are premises 
dense, but are not animal dense. 

Table 5.   Example of the farm file loaded as input into ISP 

ID Type FIPS Zone  cattle swine sheep goat other Premise
premise

_3k
premise

_10k
premise

_20k
animal

_3k
animal
_10k

animal
_20k xcoord ycoord

0 33 6115 2 940    0 0 0 0 Dairy(L) 16 143 705 1192 3948 23866 1912519.926 779478.177471014;;
1 33 6115 2 1,379 0 0 0 0 Dairy(L) 33 175 387 2289 9363 16617 1905663.556 810556.164516908;;
2 33 6115 2 1,819 0 0 0 0 Dairy(L) 18 167 467 2243 6213 19549 1915640.347 797618.708362427;;
3 33 6115 2 2,258 0 0 0 0 Dairy(L) 35 205 396 3778 10141 17044 1907912.902 807225.65922504;;
4 61 6115 2 12      0 0 0 0 Stocker(S) 25 158 594 606 5444 18911 1916950.823 789082.385581495;;
5 61 6115 2 15      0 0 0 0 Stocker(S) 36 182 380 2290 9576 16439 1907978.569 811080.21527166;;  

b. The Contact Location File 

We create another R script to generate a text file to describe the locations 

of cattle and swine markets.  These are subsets of the farm file where “type” equals “511” 
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for cattle and “512” for swine.  We then delete the columns not required by ISP; leaving 

only the coordinates for the market locations (see Table 6). 

Table 6.   Example from the contact location file (“market file”) loaded as input into ISP 

 

x.coord y.coord
2011429.535 580151.1126
2448099.754 273631.5867
1871501.834 848398.2476
1941376.126 702667.1927
2089696.962 354119.2982
1926198.788 1037604.677
2080077.613 472644.6281
2408090.623 418024.6536
2057510.191 360616.3969
1840739.37 935907.2295

1706699.847 902676.6741
1711862.379 1037000.539
2535829.592 323243.2416
1975990.614 640885.5455
1976822.924 617930.786
2087141.126 495456.172  

c. The Epidemic History File 

This file describes specifically which premises are currently infected and 

if they are detected.  If the infected premises are not currently detected, it will also state 

on which day the infected premises are detected.  During initial plausibility testing of the 

model, we include one randomly selected cattle premise from Central California without 

a time until detection in this file.  This premise is a Cow/Calf operation, with 168 cattle in 

a high premises-dense area near Redding, California. 

d. The Zone File 

In order to show a rough estimate of the area of analysis, California, we 

construct a polygon shape file by using Google Maps to find latitude/longitude 

coordinates for a rough outline of California.  We then use an R script to transform these  
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into CCS83 coordinates that can be used by ISP.  Zone 3 is used to transform all 

coordinate pairs of the polygon.  Figure 8 shows all of the coordinate data included in all 

of the ISP input files combined on a single plot. 
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Figure 8.   California Premises Locations:  Shown are the locations of all coordinate 
data input into ISP for the initial plausibility testing of the model. 

C. SIMULATION SOFTWARE PARAMETER AND INITIAL INFECTION 
SCENARIO DEVELOPMENT 

Our first task is to determine a plausible model for how the disease could spread 

through California without any controls.  This is not to say that this model is predictive of 

an actual outbreak of the disease, but that it is plausibly representative of how an  
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outbreak could spread.  Then, we develop a model using a generic control strategy and 

the same disease spread parameter settings as the uncontrolled model’s settings.  In 

Chapter III, we describe and compare the results of this plausibility testing. 

In order to accomplish the development of these two models, we assembled a 

team at the International Data Farming Workshop held March 25–30, 2012, at the Naval 

Postgraduate School in Monterey, California to study the problem.  The team included 

several experts in simulation modeling, computer science, and two veterinarians who are 

currently students of the School of Veterinary Medicine at the University of California, 

Davis and are studying to attain a Master of Preventive Veterinary Medicine (MPVM) 

degree.  This team helped us determine the sets of parameters for both the spread of the 

disease as well as many of the control parameters shown in Section 4.  We divide the 

section into six subsections: 

 Overview of the Control File, which briefly describes the text file used to 

input parameter settings into ISP.  The control file contains one row 

pertaining to each parameter described in the next three topics. 

 Development of the Model Parameters, which describes the parameters 

affecting how the model is run.  These include such things as the random 

number generator to use and the number of iterations to run the 

simulation. 

 Development of the Disease Spread Parameters, which describes the 

network and spatial parameters affecting how the disease is spread from 

premises to premises during the simulation. 

 Development of the Disease Spread Control Parameters, which 

describes the strategies and policies to control the spread of the disease as 

well as the constraints to those strategies and policies. 

 Development of Starting Scenarios, which describes the initially 

infected premises for eight different scenarios that we model. 
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1. Overview of the Control File 

ISP is designed to operate from the command line of a Linux- or Windows-based 

single computer, or multiple networked computers, with only one argument specifying 

the control file to be used by the software to simulate disease spread.  The control file 

describes to ISP how the model, disease, and control parameters are used to simulate the 

spread of a herd-based disease, both temporally and spatially, through a population.  The 

development of the control file can be accomplished through the use of a text editor, by a 

scripting software language, or by the Control File Editor graphic user interface, which is 

packaged with the Windows version of ISP.  This text file method enables the modeler to 

automate the model to make many different runs of a simulation using many different 

scenarios or include different farm, market, or epidemic history files, depending on the 

focus of the analysis.  We show a sample control file in Appendix B. 

2. Development of the Model Parameters 

The model parameters section of the control file describes to ISP some basic 

information about how the model should be run.  In our model, we include the number of 

iterations to be completed during the run, the number of time periods to model, a specific 

random number generator and seed to use during the run, the maximum infected premises 

allowed during the iteration, and a set of user-defined farm states.  The parameter settings 

and the rationale we use to develop them are given below. 

 Iteration Count:  100.  This is a medium-sized number of runs chosen to 

satisfy our computational limitations.  The statistical significance from the 

experiments is discussed in Chapter V. 

 Time Period Count:  We use 100 days during the experimental design and 

40 days during our initial testing.  Similar to the iteration count, we 

consider 100 days as a medium-sized number that gives us a good idea of 

disease behavior without overtaxing processing capability. 

 Seed:  Randomly chosen using a Mersenne Twister generator (Matsumoto 

& Nishimura, 1998). 
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 Random Generator Name:  TRandomMotherOfAll, which is a low-

resolution, low-speed generator with low memory usage (Stevenson, 

2012). 

 Max Infected Farms:  7,700, which is 30% of the total number of premises 

in our dataset.  We set this limit because we feel that if 30% of premises in 

California are infected, the control measures used at the beginning of the 

outbreak will be considered ineffective and be replaced with a new 

strategy. 

 User-Defined Farm States 

o In Control Area:  Premises have been placed in the Control Area.  

We trigger this state either when the premises are infected and 

detected, or when another premise located at a distance less than or 

equal to the designated Control Area outside radius has been 

detected. 

o In Surveillance Zone:  Premises have been placed in the 

Surveillance Zone.  We trigger this state when another premise 

located at a distance less than or equal to the designated 

Surveillance Zone outside radius has been detected. 

o In Vaccination Zone:  Premises have been placed in the 

Vaccination Zone.  We trigger this state when another premise 

located at a distance less than or equal to the designated 

Vaccination Zone outside radius has been detected. 

o Waiting for Vaccination:  The premises have been placed in the 

Vaccination Zone and are awaiting resources to become available 

to begin vaccination of the animals on the premises. 

o Processing Vaccination:  Resources have begun vaccination of the 

animals on the premises, but are not yet finished with the process. 

o Vaccinated:  All animals on the premises have been vaccinated. 
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o Waiting for Depopulation:  The premises have been infected, 

detected, and are awaiting resources to become available to begin 

depopulation of the animals on the premises. 

o Processing Depopulation:  Resources have begun depopulation of 

the animals on the premises, but are not yet finished with the 

process. 

o Depopulated:  All animals on the premises have been depopulated. 

o likeDairy:  Premises have similar surveillance practices to a dairy 

facility.  These include premises designated as:  Dairies (Small-S, 

Medium-M, Large-L), Feedlots (S, L), and Dairy Calf Ranches. 

o likeDairy before first detection:  Premises are designated as 

“likeDairy” and no premises have been detected during the current 

iteration. 

o likeDairy after first detection:  Premises are designated as 

“likeDairy” and at least one of the premises has been detected 

during the current iteration. 

o Additional states that were defined, but not used, during this 

experiment were Delayed Vaccinated and Delayed Depopulated. 

The SetState section of the control file allows the ISP user to designate some 

types of premises to a certain modeling state at the beginning of the simulation.  We used 

this section to designate a modeling state of likeDairy to all Dairy (S, M, L), Feedlot (S, 

L), and Dairy Calf Ranches, and we use this modeling state to specify certain surveillance 

parameters to use just for dairy and dairy-like premises during the simulation. 

3. Development of the Disease-Spread Parameters 

ISP has the ability to model many different disease-spread parameters, which 

describe the network and spatial disease spread from premises to premises during the 

simulation.  The sections in the control file describing these parameters are titled:  

movement type, route, fixed route, local spread, airborne spread, and infectivity.  Of 

these, we do not use route and fixed route, which model specific routes between premises 
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(e.g., a milk truck pickup route between several dairy facilities), because data at this level 

of detail is not currently available through public sources for California.  We also do not 

use the airborne spread parameter within ISP.  Instead, we assume that varying the local 

spread distance parameter will account for the majority of the aerosol spread of the 

disease.  This assumption is reasonable given that we are modeling a broad range of local 

spread distances and the fact that some types/subtypes of the FMD virus do not spread 

long distances by aerosol.  Additionally, serotype O, which has been responsible for 

many recent outbreaks in temperate countries, has shown little tendency for airborne 

spread (Stevenson, 2012).  We subdivide this section of the thesis by describing the 

following sections in the control file: 

 Movement Type:  Network spread of the disease 

 Local Spread:  Spatial spread of the disease over time 

 Infectivity:  Disease characteristics affecting disease spread 

a. Movement Type 

Even though the zones/areas discussed in Chapter I and Figure 2 seem to 

be purely spatial in design, the USDA has recognized that the network spread of FMD 

should be considered when designating these zones/areas and recommends the use of 

these types of factors in those determinations.  Since the virus is easily spread in many 

ways, direct and indirect contacts between livestock facilities could happen over greater 

distances than are accounted for in a purely spatial design.  Direct contact at highly 

connected operations, such as livestock markets, occupy a central role in the flow of 

animals and should be dealt with differently than other premises in an outbreak area 

(Dubé, 2009).  Indirect contact, such as by artificial insemination teams or hoof trimmers, 

may be higher at different types of operations than others.  In a survey of livestock 

facilities in California, for example, large swine operations had an over 3,600% higher 

mean reported monthly indirect contact rate than small beef farms (Bates et al., 2001).  

This seems to be a function of both the size of the herd as well as the species at  

the facility. 
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In order to account for the network spread of the disease, ISP uses 

movement types to model direct and indirect contact between animals.  For our analysis, 

we model 18 movement types.  The first 11 describe individual farm-to-farm movements, 

the next two model farm-to-market and market-to-farm movements, and the last five 

model indirect farm-to-farm movements. 

For each of these movement types, we developed the movement distances 

and corresponding probabilities using empirical distributions described by Bates et al. 

(2001), in which the authors study central California direct and indirect livestock contact 

rates and movement distances.  We choose to model all direct and indirect movement 

frequencies within our model, with Poisson distributions with parameters, as shown in 

Table 7.  We estimate the probability of each direct contact movement type to reach 

different distance bands by using the data shown in several graphs in Bates et al. (2001) 

and show those probabilities in Table 8.  The probability of transmission of FMD among 

different species is a poorly understood parameter and is not easily defined across 

serotypes and subtypes of the disease.  Orsel, Bouma, Dekker, Stegeman, and De Jong 

(2009) study the virus transmission of piglets, lambs, and calves, and compare them to 

each other.  After analyzing their study, we set the probability of transmission given a 

farm-to-farm movement occurs to be a function of the species of animal located on the 

premises where the movement began.  The probability of transmission for sheep and 

goats are set to a constant probability, p.  For determining a plausible uncontrolled 

spread, p = 0.2.  We set the probabilities for cattle and pigs to 1.821 (1 )p   and 

801 (1 )p  , respectively.  This equates to saying that a pig is about 80 times more 

infectious than a sheep or goat. 
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Table 7.   Shipments from livestock premises.  We consider the numeric premises “Type 
Codes” from our data to be equivalent to the “Facility Types” from Bates et al. 

(2001).  Green highlighted columns in this table show the data or calculations we 
add to the authors’ data.  The “Actual Mean” column is calculated by multiplying 

the “Mean Shipments” by the “% reporting shipments.”  The “Average Daily 
Shipments ” is the “Actual Mean” column divided by 30 to determine a daily 
rate.  This column was used in determining the plausibility of the model.  The 

similarly calculated “Average Daily Shipments +/– 95% CI” columns are used as 
high and low limits within the experimental design for their corresponding 

movement type rates. 

Type Codes
Premise 

Type No. Responding
No. Reporting 

Shipments
Reporting 
Shipments

Mean Shipments
(Monthly) -95%CI +95%CI Actual Mean

Avg. Daily 
Shipments



Avg. Daily 
Shipments

-95%CI

Avg. Daily 
Shipments
+95%CI

24, 34, 114, 214, 314 Backyard 31 29 93.55% 1.7 0 4.2 1.590 0.053 0.000 0.140
310 Goat 3 3 100.00% 6.6 0 16.8 6.600 0.220 0.000 0.560
211, 213 Sheep 15 15 100.00% 7.9 0 18.8 7.900 0.263 0.000 0.627

Beef
51, 61 < 250 52 52 100.00% 0.9 0.5 1.3 0.900 0.030 0.017 0.043
53, 63 >= 250 29 28 96.55% 2 0 3 1.931 0.064 0.000 0.100

Dairy
31, 32 < 1000 54 52 96.30% 8.2 4.3 12.1 7.896 0.263 0.143 0.403
none 1000 - 1999 54 54 100.00% 17.4 12.5 22.3 17.400 0.580 0.417 0.743
33 >= 2000 48 48 100.00% 16.4 11.9 20.9 16.400 0.547 0.397 0.697

Calf/heifer
41 < 250 10 10 100.00% 0.7 0.3 1.1 0.700 0.023 0.010 0.037
43, 73 >= 250 4 4 100.00% 22.4 0 58.8 22.400 0.747 0.000 1.960

Swine
121, 131, 151, 161 < 2000 12 11 91.67% 4.8 1.1 8.5 4.400 0.147 0.037 0.283
153, 163 >= 2000 5 5 100.00% 20 0.2 39.8 20.000 0.667 0.007 1.327

t = 30

Shipments from the Livestock Premise

 
 

Table 8.   Movement Distance Probabilities used to model farm-to-farm movements.  We 
estimate the probabilities from the corresponding graphs in Bates et al. (2001).  

Again, we consider the numeric premises “Type Codes” from our data to be 
equivalent to the “Facility Types” from Bates et al. (2001). 

Type Code Facility type 19,000 39,000 59,000 79,000 99,000 119,000 139,000 159,000 179,000 
24, 34, 114, 214, 
314 Backyard 0.615 0.110 0.025 0.060 0.010 0.035 0.010 0.000 0.135
211, 213, 310 Goat/Sheep 0.365 0.160 0.090 0.035 0.010 0.000 0.015 0.025 0.300
51, 53, 61, 63 Beef 0.390 0.220 0.125 0.055 0.025 0.010 0.020 0.015 0.140
31, 32, 33 Dairy 0.570 0.255 0.035 0.010 0.005 0.010 0.005 0.005 0.105
41, 43, 73 Calf/heifer 0.410 0.145 0.205 0.000 0.000 0.000 0.020 0.000 0.220
121, 131, 151, 
153, 161, 163 Swine 0.315 0.290 0.020 0.050 0.120 0.045 0.015 0.000 0.145

Average Probability for Specified Distance Travelled To/From a Livestock Premise
(Distance in Meters)

 

We continue to use Bates et al. (2001) as a basis to develop the parameters 

for indirect contact movements.  We calculate monthly indirect contact movement rates 

by subtracting the employee and friend columns from the total mean number of monthly 

indirect contacts shown in the authors’ data, in order to model only higher risk, indirect 

contact.  We assume employees and friends are lower risk due to their limited exposure to 
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animals on other livestock premises on a single day; however, this may not be true given 

the number of farm employees who may have more than one job or keep livestock at 

home.  We then divide the monthly rates by 30 to determine the daily rates and multiply 

this daily rate by a probability that the indirect contact moves to another susceptible 

premises.  Finally, we combine similar probabilities for efficiency’s sake within the ISP 

(see Table 9).  We then estimate the probabilities for different movement distances for 

indirect contacts from another table by the authors (see Table 10).  The probabilities of 

transmission use the same function as the direct contact movements given above. 
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Table 9.   Indirect Contact Rates.  Green highlighted columns show the data or calculations 
we add to the corresponding table in Bates et al. (2001).  We consider the numeric 

premises “Type Codes” from our data to be equivalent to the “Facility Types” 
from Bates et al. (2001).  We calculate the Average Daily Movement Rate by 

multiplying the average daily indirect contact rate by the probability of a 
movement given an indirect contact.  We then average similar movement rates in 

order to increase the efficiency of running the model in ISP.  The second table 
below shows how these combinations were modeled in the ISP. 

 

Type Codes Facility type Employee Friend

Mean 
Monthly 
Indirect 
Contacts -95%CI +95%CI

Mean Monthly 
Indirect Contacts

(Removing 
Employees and 

Friends)

Avg Daily 
Contact 

Rate

Avg Daily 
Movement 

Rate
24,34,114,214,314 Backyard 4.2 18.2 26.1 15.9 36.3 3.7 0.1233 0.0123
310 Goat 39.9 3.0 50.6 0.0 137.2 7.7 0.2567 0.0257
211213 Sheep 8.1 14.4 30.5 16.4 44.6 8.0 0.2667 0.0267

Beef
51,61 < 250 9.0 9.3 22.1 13.7 30.5 3.8 0.1267 0.0127
53,63 >= 250 30.0 6.2 46.0 28.0 64.0 9.8 0.3267 0.0327

Dairy
31,32 < 1000 89.4 16.5 234.3 220.8 247.8 128.4 4.2800 0.4280
none 1000 - 1999 213.3 13.0 418.6 401.7 435.5 192.3 6.4100 0.6410
33 >= 2000 439.8 17.9 743.2 716.3 770.1 285.5 9.5167 0.9517

Calf/heifer
41 < 250 22.5 3.8 27.8 15.5 40.1 1.5 0.0500 0.0050
43,73 >= 250 463.2 17.0 609.4 128.3 1090.5 129.2 4.3067 0.4307

Swine
121,131,151,161 < 2000 76.2 9.4 97.9 36.0 159.8 12.3 0.4100 0.0410
153,163 >= 2000 750.0 1.7 807.3 374.9 1239.5 55.6 1.8533 0.1853

t = 30

Probability of 
Movement|Contact = 0.1

Type Codes
Spread Type 
Modeled By

Average 
Movement 

Rate
41 Mvmt 14 0.0050
24, 34, 114, 214, 314, 
310, 211, 213, 51, 61, 
53, 63, 121, 131, 151, 
161 Mvmt 15 0.0252
153,163 Mvmt 16 0.1853
31,32,43,73 Mvmt 17 0.4294
33 Mvmt 18 0.9517

Indirect Contact Movement Rates

 

Table 10.   Movement Distance Probabilities used to model indirect contacts.  We estimate 
the probabilities for each of the specified distances from the corresponding table 

in Bates et al. (2001). 

Contact Type 9,000      19,000    29,000    39,000    49,000    59,000   

AI Tech 0.627 0.263 0.042 0.059 0.000 0.009
Hoof trimmer 0.237 0.395 0.263 0.053 0.026 0.026
Vet 0.456 0.327 0.105 0.053 0.007 0.052
Avg. of Distance Travelled by 
Contact Type 0.440 0.328 0.137 0.055 0.011 0.029

Probability for Specified Distance Travelled for Indirect Contacts
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We model the distribution of movements between farms and markets with 

a Poisson distribution with , which equates to a movement from the farm to 

market about once every 10 days (i.e., 1 day divided by the rate of 0.1 per day).  The 

probabilities for different movement distances are estimated from the graphs in Bates et 

al. (2001) and are shown in Table 11.  The probability of transmission given a contact at 

a market is a constant 80% for our initial plausibility model. 

Table 11.   Movement Distance Probabilities used to model farm to and from market 
movements.  We estimate these probabilities for each of the specified distances 

from the corresponding graphs in Bates et al. (2001). 

Movement Type 19,000 39,000 59,000 79,000 99,000 119,000 139000 159,000 179,000 

From Seller to Sales Yard 0.546 0.216 0.167 0.018 0.005 0.014 0.004 0.006 0.024
To Buyer from Sales Yard 0.383 0.202 0.119 0.061 0.013 0.069 0.04 0.021 0.092

Probability for Specified Distance Travelled Between a Premise and Sales Yard
(Distance in Meters)

 

b. Local Spread 

ISP uses a spread mechanism called Local Spread to model short distance 

aerosol spread and spread between premises that cannot be specifically attributed to 

direct or indirect contact (Sanson, Stevenson, Mackereth, & Moles-Benfell, 2006b).  

“Through the fence” contact, or mechanical carriage of the virus by small domestic or 

wild animals, is an example of what Local Spread attempts to model.  Sanson et al. 

(2006b, p. 3) writes that, “2160 out of the 2365 (91%) of the IPs in the U.K. 1967 – 1968 

FMD epidemic were attributed to local spread, illustrating the perceived importance of 

this mechanism.”  We use Sanson, Stevenson, & Moles-Benfell (2006a) as our guide to 

setting the local spread initial settings, but increase the duration of the local spread from 

the four days in their research to five days.  We also increased the probabilities of spread 

at each distance band in order to increase the spread of the disease after our initial testing 

showed significantly slower spread than some comparable models used in California.  

We show the settings used in the development of the model in Table 12. 
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Table 12.   Probability of local spread of the virus at distance bands of 0–1 km, 1–2 km, and 
2–3 km from the infected premises.  We allow this spread to begin one day prior 
to and four days after clinical signs for the disease are evident on the premises. 

Days After 
Clinical Signs 1,000      2,000      3,000      

-1 0.013 0.003 0.001
0 0.039 0.009 0.003
1 0.052 0.012 0.004
2 0.052 0.012 0.004
3 0.052 0.012 0.004
4 0.052 0.012 0.004

Local Spread Distance (m)

 

ISP also has parameters within the Local Spread section for the relative 

susceptibility of different species to local spread.  Donaldson et al. (2001) found that 

cattle are the most susceptible to the aerosol spread of the disease, followed by sheep and 

swine.  We assume that goats and sheep are similar in their susceptibility and adjust the 

authors’ findings slightly to account for the larger average cattle herd size in California.  

We set these parameters as guided by Sanson et al. (2006a) for cattle, swine, and sheep 

and goats to 1, 0.01, and 0.05, respectively, for our plausibility models. 

c. Infectivity 

This section within ISP includes a probability distribution describing the 

time between an animal’s infection and when that animal starts to show clinical signs of 

infection.  This is also known as the incubation period.  From studying the 2001 U.K. 

FMD outbreak, Sanson et al. (2006b) determined that a good representation of the 

incubation period is given by the cumulative distribution shown in Figure 9, which we 

use in our plausibility model. 
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Figure 9.   Cumulative distribution describing probabilities associated with the time 
between animal infection and the onset of clinical signs of the disease 

(Sanson, 2006b).  All species use the same distribution. 

The other parameter we used in the Infectivity section describes the 

variation of herd infectiousness over time.  This parameter is multiplied by the 

probability of transmission parameters in the other sections to specify an overall 

probability of transmission.  Sanson et al. (2006b) estimated this parameter by utilizing a 

Delphi conference of FMD experts.  The participants at this conference determined that 

this parameter could be represented by a linear function decreasing from the 16th day 

after herd infection to the 33rd day after herd infection at a rate of 0.059. 

4. Development of the Disease-Spread Control Parameters 

Similar to Section 3, we wish to first check that our controlled spread model is 

plausible, so we initially set it up with mean or most likely parameter settings and test it 

to ensure that the disease control parameters are having an effect on the spread of the 

disease.  ISP contains eight sections that model the control measures that may be 

undertaken to combat an outbreak of FMD.  We do not model a statewide movement 

standstill, since this response is not specifically included in the CDFA FMD response 

plans (CDFA, 2006).  The seven sections we use are listed below and described in the 

following paragraphs. 
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 Zones:  apply to premises based on its modeling state and proximity to 

explicit boundaries or other premises 

 Surveillance:  models the detection of an infected premises 

 Resources:  applies constraints to the amount of depopulation or 

vaccination controls 

 Depopulation:  describes the depopulation strategy used by the model 

 Vaccination:  describes the vaccination strategy used by the model 

 Tracing:  models the detection of movements of the disease on or off a 

premise 

 Movement Restrictions:  describes how different movement types are 

restricted upon the first detection of an infected premise during the 

simulation 

a. Zones 

Similar to how ISP applies different modeling states to specific premises 

during the course of a simulation, ISP applies “Zones” to specific premises based on their 

geographic location.  A user can define these zones explicitly using coordinate polygons 

or radially around a specific premise, in a specific modeling state.  The user may also 

specify specific start and stop times for these zones, or have them triggered by a premise 

being assigned a specific modeling state.  For our model, we use two explicit zones and 

three radial zones and describe them below: 

 ZoneCalifornia:  Explicit zone used to describe the boundaries of the 

modeling area, which is the state of California.  We start this zone at the 

simulation start and keep it active for the entire simulation.  This zone 

contains all premises in our dataset. 

 Zone_ControlArea:  Radial zone used to represent the Control Area and to 

define an area within a certain distance from a detected premise.  If a 

premise is located in this zone, ISP will assign a model state of 

in_control_area and apply certain movement restrictions and surveillance 

methods to that premise as described below.  Control area zones will be 
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active for the entire length of the simulation, beginning when the first 

premises are detected with the disease.  The outside radius used for initial 

plausibility testing will be 10 km, which is the minimum radius 

recommended by the USDA for a control area (USDA, 2011). 

 Zone_Vaccinate:  Radial zone used to represent a Vaccination zone and to 

define an area within a certain distance from a detected premise.  If a 

premise is located in this zone, ISP will assign a model state of 

in_vacc_zone and the premise will be added to a vaccination premises list, 

which will be described in the Vaccination paragraph below.  Vaccination 

zones will be active for the entire length of the simulation, beginning 

when the first premises are detected with the disease.  The USDA does not 

have a recommended radius for a vaccination zone, so we use 10 km as 

the outside radius for initial plausibility testing of the model. 

 Zone_Surv:  Radial zone used to represent the Surveillance Zone and to 

define an area within a certain distance from a detected premise.  For 

premises located in this zone, ISP will assign a model state of 

in_surv_zone unless those premises are already in a control area.  ISP will 

then apply certain movement restrictions and surveillance methods to 

those premises as described below.  Surveillance zones will be active for 

the entire length of the simulation beginning when the first premises are 

detected with the disease.  The outside radius used for initial plausibility 

testing will be 25 km, which is 5 km larger than the minimum radius 

recommended by the USDA for a control area (USDA, 2011). 

 Zone_likeDairy:  Explicit zone with the same boundaries as 

ZoneCalifornia above, but used to represent premises with a likeDairy 

modeling state.  If premises are located in this zone, ISP applies certain 

movement restrictions and surveillance methods to those premises as 

described below.  The likeDairy zone will be active for the entire length of 

the simulation. 
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b. Surveillance 

ISP models the detection of infected premises using the Surveillance 

section of the control file.  When a premises changes from an infected state to a detected 

state, authorities would assumedly impose some types of control measures to limit the 

disease spread.  ISP uses two parameters to determine the likelihood of detection.  The 

proportion of premises that participate in a surveillance type is called the selection 

probability, whereas the probability of an infected premise being detected, given that it is 

visited by a surveillance team, is called the detection probability.  The detection 

probability can also be specified for each species modeled as desired by the user.  We use 

Sanson et al. (2006b) and Hullinger (2012) as guides to these probabilities for the 

plausibility test of our model.  Additionally, ISP models three rates within each type of 

surveillance: 

 Visit delay, which is the rate at which the surveillance is delayed to a 

premise given it is selected for certain surveillance type;  

 Visit frequency, which is the rate between visits while the premise is still 

on a surveillance list; and 

 Delay to detection, which is the amount of time that passes between when 

a successful visit occurred on an infected premise and when that premise 

will be given the detected model state. 

We show the surveillance parameter settings for our model in Table 13. 
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Table 13.   Parameter settings for the seven Surveillance types within our model. 

Parameter
General 

Surveillance

General 
Surveillance 
After First 

Detect

General 
Surveillance - 
Dairy Before 
First Detect

General 
Surveillance - 
Dairy After 
First Detect

Control Area 
Surveillance

Surveillance 
Zone

Surveillance 
Trace

Activation Option Simulation start time period time period time period detected_farm detected_farm tracing

Time Period
Simulation start 
to first detection

First detection 
to simulation 

end

Simulation start 
to first detection

First detection 
to simulation 

end

First detection 
to simulation 

end

First detection 
to simulation 

end

First detection 
to simulation 

end

Surveillance Farm State
likeDairy_before

Detect
likeDairy_after

Detect
in_control_area in_surv_zone

Selection Zone ZoneCalifornia ZoneCalifornia likeDairy likeDairy
Zone_Control

Area
Zone_Surv ZoneCalifornia

Selection Probability 0.65 0.85 0.999 0.999 0.99 0.9 0.75
Visit Delay - Poisson 6 4.5 1.75 1.25 2.75 3.5 4
Visit Frequency - Poisson 6.5 4.5 1.75 1.25 4 4.5 4
Delay To Detection - Poisson 4.5 3 3 1.75 1.25 1.5 3
Detection Relative To Clinical Signs Clinical Signs Clinical Signs Clinical Signs Clinical Signs Clinical Signs Clinical Signs
Detection Probability - Constant 0.495 0.895 0.745 0.895 0.895 0.895 0.895
Detection Probability (sheep) - 
Constant

0.475 0.825 N/A N/A 0.825 0.825 0.825

Surveillance Type

 

c. Resources 

ISP uses the Resources section in the control file to apply constraints to 

the control strategies specified by the user.  If ISP needs to apply control strategies to a 

premise based on its current model state, that premise is added to a resource list.  Then, 

ISP will be allowed to apply the required strategy to premises on the list at the rate 

specified within the resource section.  ISP allows these strategies to vary over time, and 

we use a 10-day “ramp up” period for both vaccination and depopulation control 

strategies.  During the first to the ninth day after a premise has been added to a resource 

list, we limit the control strategy to only 10% of the total amount of resources available 

during the rest of the simulation.  For example, in our plausibility testing, we use a 

constraint that states that 20,000 animals can be vaccinated or depopulated per day at full 

utilization.  So, on days 1 through 9, only 2,000 animals can be vaccinated or 

depopulated per day.  The full utilization rate assumes that California has an equivalent 

amount of resources to depopulate as the U.K. did in 2001. 

d. Depopulation 

In the next section of the control file, we define our depopulation strategy, 

which is to only depopulate premises that have had the disease detected on them.  ISP 

allows alternative preemptive depopulation in zones, usually in a radius around detected 
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premises, but we chose not to model this control measure because of our understanding 

of the current views in California to such a practice (Hullinger, 2012).  The parameter 

settings we use are to activate a depopulation action upon ISP assigning a premise to the 

modeling state of “detected” and the action will only be applied to that particular 

premise.  We will constrain this action using the depopulation resource described above. 

e. Vaccination 

Our vaccination strategy for the plausibility test is to vaccinate likeDairy 

premises that are assigned to the vaccination zone.  Vaccinations are completed from the 

outside to the inside of a radial vaccination zone and are constrained by the resources 

described in the “Resources” paragraph above.  Once a premise is vaccinated, its 

probability of infection by another premise is reduced, based on a user-defined lookup 

table.  This table defines the proportion of animals on the premise that are not immune to 

infection at a given point in time.  We use conservative estimates of this proportion, 

which we derived from Doel et al. (1994).  The authors examined the rate of development 

of immunity in several FMD susceptible species, including cattle, and found that all of 

the cattle they tested were immune four days after vaccination.  However, they also cite 

other studies that indicated that this result may be optimistic.  Our table states that 10% of 

the animals on the premises are not immune after four days and 0.5% are not immune 

after 15 days.  The effect of this proportion is that ISP multiplies the probability of 

transmission by this proportion to determine a new overall probability of transmission.  

For example, if a certain infected premise attempted to spread the disease to other 

premises that were in their fifth day after vaccination, ISP would multiply the calculated 

probability of transmission (e.g., 0.5) by 0.1, the number in the table, to reach an overall 

probability of transmission of 0.05. 

f. Tracing 

This is the attempt to find contacts that have been made onto or off of a 

particular detected premise.  ISP can model both types of tracing, backward and forward.  

Backward tracing involves interviewing the staff of a certain detected premise to 

determine what direct and indirect contacts were possible between the start of the 
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outbreak and the presumed date of the premise’s infection, which is based on the 

observation of the clinical signs of the disease.  The goal of backward tracing is to 

determine what premises could have infected the detected premise and then to apply 

certain controls or surveillance to the possibly infected premise.  In contrast, the goal of 

forward tracing is to determine what other premises that the detected premises could have 

infected since the presumed date of infection.  This is accomplished in the same manner 

as backward tracing, by personal interview of the staff of the detected premise. 

The ISP user can define tracing parameters for forward and backward 

tracing for each individual movement type or define them globally for all movement 

types.  We apply the settings globally within our model.  The tracing parameters available 

include:  when the tracing action will begin, the probability that a movement is forgotten, 

and the rate at which tracing interviews are accomplished.  We use all of these parameters 

as described below: 

 Time period to start tracing:  We begin tracing operations two days after 

the first detection and continue them through the entire simulation. 

 Probability the movement is forgotten:  We use a setting of 42.5% of 

movements will be forgotten. 

 Tracing delay:  We use a Poisson distribution with a mean rate of delay of 

3.75 for this setting.  This equates to having to an average time until 

tracing is complete of almost four days. 

g. Movement Restrictions 

ISP reduces the rate for each movement type after the first infected 

premise is detected using the movement restriction parameters within the control file.  

For our model, we define three movement restrictions.  For all movement types with a 

source or destination premise in a control area, the probability that the movement will not 

occur is set to 92%.  For all movement types with a source or destination premise in a 

surveillance zone, the probability that the movement will not occur is set to 84.5%.  We 

added an additional movement restriction on all to or from market movement within 

California in order to test that control strategy.  This restriction is turned on or off by 
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setting the probability that the movement will not occur to either 0% or 99%, depending 

on the strategy used.  For our plausibility testing, this probability was set to 0%, meaning 

that only markets in a control area or surveillance zone are affected by a movement 

restriction. 

5. Development of Starting Scenarios 

As mentioned earlier, the majority of the studies conducted on the spread of FMD 

in California have been limited to the Central Valley of the state, where the majority of 

the large livestock premises are located.  We wish to broaden that scope by starting 

outbreaks of the disease randomly chosen from all premises in California if they meet 

certain conditions.  The conditions we choose are based on the suspected sources of FMD 

outbreaks of modern livestock countries as well as expert opinion (Hullinger, 2012 & 

Stevenson, 2012).  We show the scenarios we model in Table 14. 
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Table 14.   Description, methodology, and rationale behind the scenarios we model. 

 
Scenario Description Methodology Rationale

Southern Border

Randomly infect five cattle facilities 
along the southern border of California 
to represent spread from a Mexican 
FMD outbreak.

If [(Latitude <= 33 or Longitude >= -
115) And number of Cattle on Farm > 
10], then eligible for selection.  
Randomly selected 5 initially infected 
premise from eligible list.

Bulgaria, 2011.  Index case was near the 
Turkish border and a feral pig was 
antemordem diagnosed with FMD.  
Turkey had an FMD outbreak occuring 
at the time.

Market
Randomly infect one market to represent 
spread from direct or indirect contact.

If Type = 511 OR 512, then eligible for 
selection.  Randomly select 1 to be 
initially infected premise.

Markets are known to be supernodes in 
the spread of FMD.  The source of 
infection to the market could have been 
a person involved in the livestock 
industry who had recently returned from 
travel to a country with a current FMD 
outbreak.

San Francisco Port

Randomly infect one swine facility near 
San Francisco to represent illegal import 
of feed for swine (as in UK outbreak of 
2001).

If [(37.25 < Latitude <= 38.25 And 
Longitude < -121.75) And number of 
Swine on Farm > 10], then eligible for 
selection.  Randomly selected 1 initially 
infected premise from the eligible list.

LA Port

Randomly infect one swine facility near 
Los Angeles to represent illegal import 
of feed for swine (as in UK outbreak of 
2001).

If [(33.2 < Latitude <= 34.2 And 
Longitude < -117) And number of Swine 
on Farm > 10], then eligible for 
selection.  Randomly selected 1 initially 
infected premise from the eligible list.

High Animal Density
Randomly infect one cattle facility in an 
area in the 90th percentile or higher of 
animal-dense locations.

If [(Number of Animals within 10k >  
47779 (90th Percentile)) And (Latitude 
> 34) And number of Cattle on Farm > 
10)], then eligible for selection.  
Randomly selected 1 initially infected 
premise from the eligible list.

Conducted in order to compare our 
model to other models of FMD in 
California, most of which are in high 
animal dense areas.  Also, this is the 
most likely area to be infected by an 
terrorist organization.

Low Animal Density
Randomly infect one cattle facility in an 
area in the 10th percentile or lower of 
animal-dense locations.

If [(Number of Animals within 10k <  
647 (10th Percentile)) And (Latitude > 
34) And number of Cattle on Farm > 
10)], then eligible for selection.  
Randomly selected 1 initially infected 
premise from the eligible list.

Conducted to contrast with the High 
Animal Density Scenario.

High Premise Density
Randomly infect one cattle facility in an 
area in the 90th percentile or higher of 
premise-dense locations.

If [(Number of Farms within 10k >  185 
(90th Percentile)) And (Latitude > 34) 
And number of Cattle on Farm > 10)], 
then eligible for selection.  Randomly 
selected 1 initially infected premise from 
the eligible list.

Conducted in order to determine how 
ISP reacts to high premise dense areas in 
comparison with high animal dense 
areas.  This may also indicate how the 
disease could spread through Northern 
California, which is a geographic area 
which has not been studied as much as 
other areas of the state.

Low Premise Density
Randomly infect one cattle facility in an 
area in the 10th percentile or lower of 
premise-dense locations.

If [(Number of Farms within 10k <  12 
(10th Percentile)) And (Latitude > 34) 
And number of Cattle on Farm > 10)], 
then eligible for selection.  Randomly 
selected 1 initially infected premise from 
the eligible list.

Conducted to contrast with the High 
Premise Density Scenario.

Swine infected by feeding on illegally 
imported meat were the probable sources 
of infection in Taiwan (1997), the UK 
(2001), and South Korea (2011)
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III. PLAUSIBILITY TESTING OF INITIAL DISEASE-SPREAD 
MODELS 

In this chapter, we describe and compare the disease-spread dynamics of the 

Uncontrolled and Controlled Spread Models described in Chapter II.  Testing model 

plausibility is difficult because no outbreaks of FMD have been observed in California 

since 1929, and the livestock industry has changed considerably since then.  We therefore 

have two options to use in order to attempt to categorize our simulation model as 

plausible or not. 

 First, we could attempt to study recent outbreaks in countries whose 

livestock industry is similar to ours and parameterize our model similar to 

how those outbreaks actually behaved.  This method, however, ignores 

important differences between California and those countries in animal 

husbandry methods, animal/premises densities, and intensity of operations. 

 Second, we could consult a number of subject matter experts (SME) to try 

to discern how to parameterize the model based on their opinions as 

Sanson et al. (2006b) did when parameterizing ISP for New Zealand.  This 

method is also difficult because SMEs do not always agree, it may not be 

clear how to weight differing opinions, and it is time consuming to gather 

and compile the opinions. 

Of these two, the SME option may be a better course.  Because of time 

availability, however, we choose to compare our simulation model to another country’s 

outbreak.  Ultimately, this plausibility test does not have much impact on our final results 

because we use a design of experiment to explore a wide variety of different parameter 

combinations in order to see which are most important in the model.  The plausibility 

testing that we conduct here is merely done to ensure that the model is producing 

reasonable results and should not be construed as being predictive of an actual outbreak 

of FMD in California. 
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A. THE UNCONTROLLED SPREAD MODEL 

In order to determine whether the base models we developed are plausible, we 

begin by comparing the uncontrolled spread model to the “silent spread” of the disease—

the spread of the disease prior to infected premises being detected—from a previous 

outbreak in a modern livestock country.  Gibbens et al. (2002) estimated that during the 

U.K. outbreak in 2001, at least 57 premises were already infected with FMD when the 

first detected case was disclosed.  Using the starting scenarios described in Section 5, we 

compare how many premises were infected on the 21st day of our model to the author’s 

estimated number of premises in order to determine our model’s plausibility.  Even 

though some of the starting scenarios had significantly larger outbreaks, we believe that 

the model we developed is plausible because the average across all scenarios tested was 

similar to the U.K. outbreak, and two of our scenarios were within 11 premises of the 

U.K. number.  The results of this comparison are shown in Table 15. 

Table 15.   Six out of seven scenarios we examined that are similar to the 2001 U.K. FMD 
outbreak have an average outbreak size after 21 days that are in the same order of 
magnitude as the U.K. outbreak, which had an estimated 57 infectious premises 
on the 21st day of the outbreak (Gibbens et al., 2002).  We conclude from this 
comparison, that our model is a plausible model of uncontrolled spread within 

California. 

Number of Infected Premises by Scenario 
(100 Iterations) 

Scenario Mean Std Dev Q.25 Q.75 
Low Animal Density 10.40 20.45 1.00 8.00 
Border 60.47 30.00 38.25 77.75 
Market Start 14.92 57.67 1.00 5.75 
LA Port 12.34 10.50 5.25 15.75 
SF Port 537.38 143.43 450.25 572.75 
High Premise Density 68.59 83.02 16.00 95.00 
Low Premise Density 11.18 66.12 1.00 1.00 
All Scenario Average 102.18 58.74 73.25 110.86 
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We also looked at which spread mechanisms were causing the disease spread to 

see if those mechanisms were similar to the literature.  The mechanisms that were 

causing the most spread were MovementType12, which is market movement; 

MovementType18, which is indirect contact from large dairy premises; and local spread 

(see Figure 10).  Even though the local spread effects may be higher than expected when 

compared to the indirect contact and market movement, especially when considering that 

many forms of indirect contact are catagorized as local spread within actual outbreak 

statistics, we feel these spread mechanisms are similar in their impacts on the outbreak to 

those observed in the literature and are therefore plausible for our purposes. 

 

Figure 10.   The distribution of disease-spread mechanisms during plausibility testing 
of the Uncontrolled Spread Model.  The spread mechanisms with the 

highest probability of causing disease spread are MovementType12, which 
is market movement; MovementType15, which is indirect contact at many 
types of premises; and local spread.  The x-axis shows the probability that 
the spread mechanism shown along the y-axis causes disease spread.  The 

counts to the right of each bar show how many times the spread 
mechanism caused the disease spread over the 100 iterations that the 

simulation was run.  See Appendix A for the details of each spread type. 
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B. THE CONTROLLED SPREAD MODEL 

Determining the plausibility of the controlled spread model is more difficult than 

the uncontrolled model, since the controls used are unique to what we believe are “most 

likely” control scenarios for the United States and, as such, are not comparable to 

outbreaks in other countries.  In order to determine plausibility, we simply observe how 

the uncontrolled spread model is affected by the same set of controls over all starting 

scenarios to ensure that the outputs are reasonable.  We found that the control parameter 

settings affected the uncontrolled spread model predictably for all scenarios.  An example 

showing the spread comparison between models, using the High Premises Density 

scenario, is shown in Figure 11, and the distribution of spread mechanisms is shown in 

Figure 12. 

 

Figure 11.   Comparison of Plausibility Models:  Uncontrolled Spread vs. Controlled 
Spread.  By observing the infected premises curve for both the 

uncontrolled and the controlled spread on a log scale, we can see the effect 
of detecting an infected premise.  Here, the minimum detection time over 

100 simulation iterations was two days, but the effect of the detection 
begins on Day 4, based on the length of time needed to apply controls. 
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Figure 12.   The distribution of disease-spread mechanisms during plausibility testing 
of the Controlled Spread Model.  The spread mechanisms with the highest 

probability of causing disease spread are local spread and 
MovementType12, which is market movement.  Notice that Epidemic 

History, which is merely the initially infected premises, contains almost 
20% of the spread and how the counts along each bar are significantly 
reduced from Figure 10, which indicates that the controls are having an 

effect on the disease spread. 
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IV. SIMULATION EXPERIMENTAL DESIGN 

Because intentionally introducing the virus into a large livestock population is not 

a viable method for scientific inquiry, FMD is generally studied in one of three ways: 

 Live virus infection and study of a limited quantity of susceptible animals 

to determine virus and vaccine characteristics; 

 Statistical studies of past or current outbreaks to study how diseases have 

spread through populations, given the characteristics of the study area and 

virus type/subtype; and 

 Simulation modeling to attempt to predict the characteristics of future 

outbreaks. 

We intend to use the research completed by others in the first two ways to inform 

our research of the third way—simulation modeling.  We do this by designing an 

efficient experimental design that varies the parameters of the simulation in order to find 

response strategies that are robust to those variations.  The next section explains how this 

was done by giving an overview of why we use an experimental design in general, and 

then how we implemented our design specifically. 

A. WHY WE USE AN EXPERIMENTAL DESIGN 

In Chapter II, Section A, we described some of the objectives of simulation 

modeling of a disease.  There exists significant uncertainty in the way that a disease 

spreads through a population; the manner in which the first premises are infected; and 

what policies, technologies, and logistical constraints we may have in our attempts to 

control the disease.  In order to study how the disease may spread and to find control 

measures that are robust to these uncertainties, we run the simulation many times using a 

variety of simulation parameter settings, initial infection scenarios, and control strategies.  

With 73 factors considered in our model, conducting a full-factorial design—one that 

tries every combination of factors—is computationally intractable.  Even by making 

every factor binary, having only a high and low setting, it would require 273 simulation  
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runs.  Instead, we conduct this experiment in an intelligent way in order to maximize our 

insights and conclusions.  So, we use an efficient experimental design.  As Sanchez 

(2008, p. 73) states, 

…for those interested in exploring the I/O (Input/Output) behavior of their 
simulation model, efficient experimental design has a much higher payoff 
at a much lower cost.  A well-designed experiment allows the analyst to 
examine many more factors than would otherwise be possible, while 
providing insights that cannot be gleaned from trial-and-error approaches 
or by sampling factors one at a time. 

An experimental design is a matrix in which every row represents one simulation 

run, called a design point, and every column represents a certain parameter, called a 

factor.  In our case, the factors include the different ways the disease could behave, the 

environment in which the disease starts and spreads, and the controls we impose to stop 

that spread.  Examples of the factors we look at in the experimental design include:  the 

rate at which animals start to show clinical signs of FMD, the probability of an animal 

being moved some distance and spreading the disease, and how often animals are 

observed for signs of the disease.  Our goal is to then test the factors at many different 

settings, called levels, in an efficient way that allows us to see the factor levels’ effects on 

the spread of the disease without undue strain on our computational resources. 

Many experimental designs for simulations exist in the literature and several have 

been designed at the Naval Postgraduate School’s Simulation Experiments and Efficient 

Design (SEED) Center.  Most of these designs are based on nearly orthogonal Latin 

hypercube (NOLH) designs and may be crossed with a traditional factorial design to 

make a mixed design (Cioppa & Lucas, 2007).  NOLH designs have good qualities in 

that they are “space-filling” and have minimal pairwise correlations between factors.  The 

former is beneficial because it explores the entire sample space and the latter because it 

ensures that the metamodel developed from the design will indicate factor coefficients 

very similar to the true, unknown, coefficients—even in the presence or absence of other 

more significant factors.  In other words, even if the factors we include in our experiment 

are not the most significant factors impacting the simulation output, the metamodel is still  
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informative because it shows the correct main effects of included factors.  It cannot, 

however, show the interactions of the included factors with the factors we choose not  

to include. 

B. OUR EXPERIMENTAL DESIGN IMPLEMENTATION 

Because of the complexity of ISP and its large number of inputs, attempting to 

analyze the ways in which these inputs affect the output of the simulation is a significant 

endeavor.  We use a Nearly Orthogonal and Balanced design for our experiment (Vieira, 

2012a).  From ISP, we choose 70 continuous and 2 discrete two-level parameters to vary.  

We then cross this design with the eight starting scenarios to develop 4,096 unique design 

points.  We show a small sample of the design in Figure 13 and a description of each 

factor in Appendix A.  The design has a maximum pairwise correlation of less than 4%.  

Five percent is the maximum to still be considered a nearly orthogonal design.  For each 

design point, we generate an ISP control file and an epidemic history file with randomly 

chosen, initially infected premises based on the constraints of the modeled starting 

scenario.  Each control file is used to simulate 100 iterations, for a total of 409,600 

individual simulations.  The simulations were run on the SEED Center’s cluster of 60 

computers and took approximately seven days to complete. 

 

Figure 13.   Screenshot from the experimental design with the first five design points 
of the first three starting scenarios.  The six factors shown are varied in a 

nearly orthogonal and balanced way between the low and high levels 
shown in the first two rows of the spreadsheet. 
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C. MEASURES OF EFFECTIVENESS (MOE) 

There are many ways to measure how effective the control policies implemented 

during an outbreak are in terms of their impact on the livestock industry and the animals 

on the premises.  Depending on the priorities and costs involved with a particular 

outbreak, some authorities will be most concerned with the number of animals or 

premises infected, while others will care more about how many of either are vaccinated, 

depopulated, or put under some type of movement restriction.  For our analysis, we focus 

on those measures of effectiveness (MOEs) we feel have the most impact on the livestock 

industry and the state of California: 

 Detection Time:  the amount of time between the start of the simulation 

and when the first infected premises are detected. 

 Infected:  the number of cattle or premises infected.  We include cattle in 

this MOE because it is the animal that has the most impact on the 

economy in California. 

 Affected by Movement Restrictions:  the number of cattle or premises 

affected by movement restrictions, either in the control area or 

surveillance zone.  We include this because movement restrictions pose an 

economic burden on premises in the control area.  We view this MOE as 

as a surrogate to explicitly modeling the economic impact, which would 

require significantly more research and detail in the model to be accurate. 

 Weighted Average of Infected and Affected:  Sixty percent of the 

weight was given to Infected and 40% to Affected, signifying that infected 

premises are more detrimental to the study area than affected premises.  

This MOE allows us to combine the previous MOE in order to see if 

controls can be effective against both simultaneously. 

 Frequency of Max Infected Premises:  the number out of 100 simulation 

iterations reaching the maximum infected premises limit.  This MOE helps 

us determine the potential for a large outbreak. 

We considered four ways of calculating each MOE, with the exception of the 

Frequency of Max Infected Premises, which is measured by a simple count.  The first 
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way is the mean over all simulation iterations.  This is the simplest and most easily 

explainable method to describe the data; however, it does not account for any variability 

displayed within the simulation and may oversimplify the characteristics of the outbreak.  

Some modelers prefer using the median instead of the mean because the distributions of 

the output variables in most FMD models are highly skewed.  The median is a better 

predictor of what would be most often seen of the MOE.  We prefer the mean, however, 

because our purpose is to limit “worst-case” outbreaks, which we believe are not modeled 

as well by the median.  The second way is the upper quartile mean.  This statistic is 

calculated by taking the mean of the upper quartile of the simulation results and is a more 

pessimistic view of the data than the mean, since it only includes the largest 25% of the 

outbreaks represented by a design point.  It provides a better measure to compare control 

strategies aimed at limiting large outbreaks while not being overly influenced by outliers.  

Like the mean, it does not expressly measure the variability of the output, though.  The 

final way we consider is to calculate the MOE by using a quadratic loss function, which 

is the sum of the mean squared and standard deviation squared; a standard measure in 

simulation analysis (Sanchez, 2000). 
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V. DATA ANALYSIS 

In this chapter, we describe the results of our simulation model and the analysis of 

the data.  We leave our interpretations and conclusions from each result for Chapter VI.  

Primarily, we use JMP Pro 9.0 (JMP, 2012) as the statistical software package to conduct 

our analysis.  When describing the factors within our model, we use the term “decision 

factor” with factors that are controlled by livestock producers, livestock-related 

individuals or companies, or state or federal authorities before or during an FMD 

outbreak.  Examples include the size of a control area or a particular vaccination strategy.  

Alternatively, we use the term “noise factor” with factors that are not controlled or only 

controlled at a significant cost, such as the average time until clinical signs are apparent 

or the number of animal movements that originate at small dairy premises prior to the 

detection of an outbreak.  We do not describe each factor modeled in detail in this 

chapter.  Instead, we provide these detailed descriptions in Appendix A.  We divide the 

chapter into six sections: 

 Correlation:  a description of how the factors correlate with the MOEs 

and how the MOEs correlate with each other. 

 Models used to explore simulation output:  descriptions of the modeling 

techniques we use to explore the simulation output. 

 Impact of starting scenarios:  a description of how the starting scenarios 

impacted the simulation results. 

 Time until the first detection of infected premises:  a description of the 

detection time results and the models we use to determine its contributing 

factors. 

 Mean number of infected premises:  a description of the number of 

infected premises results and the models we use to determine this MOE’s 

contributing factors. 

 Model to explore the potential for a large outbreak:  a description of 

the model we develop to address the impact of the maximum number of 

infected premises parameter within our simulation. 
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A. CORRELATION 

Correlation is an indicator of the linearity in the relationship between two factors.  

(Montgomery, Peck, & Vining, 2006).  It is a number between –1 and 1, with negative 

numbers indicating that as one factor grows, the other decreases.  It should not be used to 

predict the value of one factor given another factor, but can be valuable as a first step 

towards looking for relationships between two factors and getting an idea of how well 

predictive models may perform.  We produce a correlation matrix in order to check the 

pairwise correlations between all of the factors and MOEs within our model and provide 

our analysis in the next three sections. 

1. Factor and MOE Correlation 

Correlations between the factors and MOEs are generally between –0.25 and 0.25, 

with only two exceptions.  The first is the Local Spread Multiplier, which is a noise 

factor.  This is a multiplier applied to the distance bands of the local spread parameter 

within ISP (see Table 12).  For example, the distance bands used in the base model for 

Local Spread are 1,000 m, 2,000 m, and 3,000 m.  The Local Spread Multiplier varies 

these bands through multiplication.  Thus, if a Local Spread Multiplier of 1.5 was applied 

to a specific design point, then the resulting distance bands would be 1,500 m, 3,000 m, 

and 4,500 m.  The probability of the disease spread to those distance bands would remain 

the same, however.  The Local Spread Multiplier was correlated at 0.25 or above to all 

MOEs except Average Detection Time and Robust Weighted Average of Infected Cattle.  

This indicates that as the Local Spread Multiplier increases, so would the MOE.  The 

second factor showing some correlation is the Delay To Detection of Dairy or Dairy-like 

Premises, which describes the amount of time between when a certain premises is 

inspected for disease and when the disease is actually detected.  This factor is positively 

correlated with the Average Detection Time at 0.53. 

2. Impact of Factor Correlations on Potential Models 

Since the correlations between both the noise and decision factors with the MOE 

are low, we suspect that there is significant nonlinearity within the simulation output (see  
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Figure 14), and that no simple linear or quadratic functions will represent the outbreaks 

with high confidence.  This is to be expected, however, within a complex system such as 

disease spread.  Keeling (2005, p. 1196) states,  

For the spread of FMD, existing biological and veterinary knowledge is 
still not sufficiently quantified to enable the creation of a complex model 
that can accurately encompass all the mechanisms of disease transmission 
both within and between farms, and more basic research is needed. 

 

 

Figure 14.   Average Number of Premises Infected vs. Several Noise and Decision 
Factors.  The relationship between the MOEs and each of the factors is not 
clearly linear and there exists a large amount of variation within the data. 

3. Between MOE Correlation 

Correlations between all MOE pairs, with the exception of Detection Time, are 

generally above 0.8.  This indicates that the MOEs are highly positively correlated.  We 

show a sample of the effect of a high correlation in the graph in Figure 15.  Because of 

the similarity between MOEs, for simplicity’s sake, we will generally discuss our 

simulation results using the mean of the MOEs. 
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Figure 15.   Graphs showing how similar various calculations of MOEs are when 
plotted against the same variables—here two depopulation resource 

factors.  The vertical axis describes several different MOEs.  The 
horizontal axis within each column describes a change in the 

“Resource1.TimePeriodStart2.FullUtilization,” which is the number of 
days until all depopulation resources are available.  Each column of graphs 

represents a bin for the “Resource1.PerTimePeriod,” which is the full 
number of resources available for depopulation.  The smoother lines in 
each column of graphs, where the MOE changes, but the factors vary 
similarly, are virtually identical.  This is the effect of having highly 

correlated MOE. 

B. MODELS USED TO EXPLORE SIMULATION OUTPUT 

We use two common techniques to model the output of our simulation:  multiple-

regression analysis and partition trees, also known as classification and regression trees  
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(CART).  Both of these will be impacted by low correlations between the factors and the 

MOEs, and by the suspected nonlinearity within the simulation.  Below are descriptions 

of the two techniques. 

1. Multiple Regression Analysis  

Multiple regression analysis seeks to explore the relationship between several 

factors, called regressors, and a response variable, which we call an MOE (Montgomery, 

Peck, & Vining, 2006).  It does this by attempting to approximate the behavior of the 

response variable with a linear equation incorporating the regressors.  By observing the 

coefficients of the linear equation, we are then able to identify which factors have the 

greatest impact on the response variable or MOE.  We evaluate the models using the 

adjusted R2, a common measure to compare how models are able to describe the data.  

This statistic is a score between 0 and 1 that measures how much variability is explained 

by the factors in the model, but penalizes for adding insignificant factors to the model 

(Montgomery, Peck, & Vining, 2006).  In order for the regression to be adequate, four 

assumptions about the residual errors between the actual response and the predicted 

response must be met.  They are:  the mean of the errors must equal zero, the errors must 

have constant variance, all errors are independent, and all errors are normally distributed.  

The most difficult of the assumptions for us to meet is the normality assumption because 

tests for normality are highly influenced by outliers, which are prevalent within our 

simulations.  We will test all of these assumptions for the models presented later in this 

section. 

2. Partition Trees  

Partition trees are graphical representations of a hierarchy of questions asked of 

the data to determine how they should be classified or grouped (Montgomery, Peck, & 

Vining, 2006).  The questions are displayed as an upside down tree, with the root at the 

top containing the entire dataset.  The data are then split sequentially in order to 

maximize the difference in the mean of continuous factors or the probability of 

categorical factors so that the nodes, or leaves, are as much alike as possible.  Many  
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algorithms exist to accomplish these splits.  JMP uses a log Worth calculation for 

categorical factors and a Sum of Squares (SS) calculation for continuous factors (SAS, 

2010). 

C. IMPACT OF STARTING SCENARIOS 

Since ISP is a spatial model, we expect that it will behave differently given 

different starting scenarios, and that some scenarios are more likely to produce long 

detection times or large outbreaks.  We tested these assumptions by conducting  

Tukey-Kramer HSD (honestly significant difference) comparison of means tests 

(Mendenhall & Sincich, 1984) on the Detection Time mean and the Infected Premises 

mean.  This test calculates a  single statistically significant critical difference (the HSD), 

in our case at a 95% confidence level, for the mean pairs and then groups the factor 

means in bins according to the computed critical difference.  The results show that there 

are significant differences in the behavior of the model, based on a starting scenario using 

both MOEs.  The Southeast Border scenario has a statistically significant lower mean 

detection time, while the High Animal Density scenario has a statistically significant 

higher mean number of infected premises.  These results are shown in Figures 16 and 17.  

Additionally, all multiple-regression models and partition trees explained in Sections D, 

E, and F are first run with the starting scenario allowed in the model.  In all cases, it is the 

most significant factor in the model.  We present the rest of our models without the 

contribution of the starting scenarios, however, in order to focus on which factors 

contribute most to the MOEs across all starting scenarios. 
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Figure 16.   Tukey-Kramer HSD comparison of means test for Detection Time.  The 
graph shows the respective detection times output for each starting 

scenario.  The green diamonds represent the mean detection time along 
with a 95% confidence interval.  Generally, if the diamonds do not 

overlap, then the means are different.  The statistical tests printed below 
the graph show which starting scenarios have statistically significant 
differences.  The first matrix of values is Tukey’s honestly significant 
difference (HSD) subtracted from the absolute difference between the 
means.  In this case, the HSD is 0.2217, which is the value along the 

diagonal.  Positive values show that the pairs of means are significantly 
different.  The table displayed at the bottom of the figure is a sorted list of 
the means.  The capital letters displayed in the middle of the table show 
which scenarios are within the HSD of another scenario.  Scenarios not 

connected by the same letter are significantly different. 
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Figure 17.   Tukey-Kramer honestly significant difference (HSD) comparison of 
means test for Infected Premises.  The graph shows the respective number 

of infected premises output for each starting scenario. 

D. TIME UNTIL THE FIRST DETECTION OF AN INFECTED PREMISES 

There is some debate within the literature about the importance of the length of 

time between when the first premises are infected and when the first premises are 

detected.  Carpenter et al. (2011) use simulation to vary the length of time between when 

a facility is infected and when it is detected to estimate the economic impact of the 

outbreak to the United States and California, specifically.  The authors find that the 
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shorter the time frame, the less expensive the outbreak.  McLaws & Ribble (2007) 

research the relationship between outbreak size and early detection during outbreaks 

between 1992 and 2003.  Given the authors compile their data from many countries with 

various ways of reporting, there is significant variability within the documented statistics.  

Their analysis of the statistics, however, leads them to conclude that there is no direct 

relationship between outbreak size and early detection.  In this section, we will describe 

the distribution of the Detection Time mean, the relationship between infection and 

detection in our model, and then discuss a multiple-regression model and a partition tree 

model that explore the most important factors determining the detection time from our 

simulation. 

1. Distribution of Detection Times 

We begin by analyzing the distribution of the mean detection times across all 

factors and starting scenarios (see Figure 18).  The mean is 5.8 days, with a standard 

deviation of 1.5 days, and the distribution is relatively normal in shape, although 

asymptotically bounded on the left at two days.  The maximum mean detection time is 

10.57 days. 

 

Figure 18.   Distribution of Detection Time means across all factors and scenarios 

2. Infection vs. Detection Results 

The assumption that the shorter the length of time between infection and 

detection, then the smaller the number of infected premises did not hold for our 

simulation, in general.  Instead, what we observe is that as the detection time increases, 



 70

the number of infected premises increases for a short amount of time and then decreases 

steadily (see Figure 19).  This observation is also evident across design points with high 

or low potential for being large (see Figures 20 and 21).  We discuss this perhaps 

counterintuitive result in Chapter VI. 

 

Figure 19.   Average number of infected premises vs. average detection time.  The 
smoother line shows the trend of the output, while the contours show the 
concentration of the data—the darker the area, the more data are located 

there.  Red data points are those iterations of the simulation for which the 
data point has the potential to be large (over 7,700 premises), while blue 
data points are from design points that do not have this potential.  Notice 

that as the average detection time increases, the number of infected 
premises also increases for a short time, then decreases steadily after about 

3.7 days. 
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Figure 20.   Average number of infected premises vs. average detection time for 
scenarios (design points) with the potential of a large outbreak.  Notice the 

similar behavior in this figure and Figure 21. 

 

Figure 21.   Average number of infected premises vs. average detection time for 
scenarios with low potential of a large outbreak. 
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3. Multiple-Regression Model 

We use a forward Akaike Information Criterion (AIC) stepwise technique to 

create the multiple-regression model.  This technique uses an algorithm to add significant 

factors to the model, while penalizing the addition of insignificant factors or those with 

insignificant coefficients and works well with large datasets (Posada & Buckley, 2004).  

We allow the algorithm to search through all noise and decision factor main effects and 

second order polynomials to develop a model.  The fitted model contains 14 terms that 

explain about 42% of the variability in the data and produces an adjusted R2 of 0.417 (see 

Figure 22). 

 

Figure 22.   Fitted model for Detect Time mean.  Adjusted R2 is 0.417.  Actual vs. 
Predicted responses are plotted and an Analysis of Variance (ANOVA) is 
shown indicating that the model is significant, with a p-value of < 0.0001.  
The “Prob>F” statistic shows the p-value of the test.  Since the p-value is 
smaller than 0.05, we reject the null hypothesis that the factors included in 

the regression have no effect on the response variable. 

We must now check the adequacy of the model based on the four assumptions, of 

which the model passes two.  Independence is satisfied because all iterations and all 
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design points were randomly chosen, and the residual mean is zero, as shown in  

Figure 23.  However, the residuals do not display constant variance (see Figure 23), nor 

are they normally distributed (see Figure 24). 

 

Figure 23.   Residual by Predicted plot of multiple-regression model of the Detect 
Time mean.  The mean of the residuals is 0, identified by the blue dashed 

line; however, the residuals display heteroscedasticity. 

 

Figure 24.   Distribution of the residual errors of the multiple-regression model of the 
Detect Time mean.  We fit the distribution to a normal curve in the right 

column of the figure.  Using the mean and standard deviation of the 
residuals, shown in the “Moments” column, JMP builds a fitted normal 
distribution.  We then perform a Kolmogorov-Smirnov-Lillefors (KSL) 
Test for goodness of fit between the distribution of the residuals and the 
fitted normal distribution.  The “Prob>D” statistic shows the p-value of 

the test.  Since the p-value is smaller than 0.05, we reject the null 
hypothesis that the distribution of residuals is normal. 
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We attempt to correct the heteroscedasticity of the residuals by performing a 

transformation on the Detect Time and rerunning the forward AIC stepwise algorithm.  

We select a transformation to correct the nonconstant variance and nonnormality by 

trying several usual transformations including the log, square root, and exponential 

(Montgomery, Peck, & Vining, 2006).  Ultimately, we choose the square root 

transformation because it best corrects the problems.  The resulting fitted model has a 

lower adjusted R2 of 0.402 (see Figure 25), but now passes the constant variance 

assumption (see Figure 26).  However, we were unable to meet the assumption of the 

residuals being normally distributed (see Figure 27). 

 

Figure 25.   Fitted model for Square Root of Detect Time mean.  Adjusted R2 is 0.402.  
Actual vs. Predicted responses are plotted and an Analysis of Variance 

(ANOVA) is shown indicating that the model is significant, with a p-value 
of < 0.0001. 
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Figure 26.   Residual by Predicted plot of the multiple-regression model of the Square 
Root of Detect Time mean.  The mean of the residuals is 0, identified by 

the blue dashed line, and we have removed the heteroscedasticity. 

 

Figure 27.   Distribution of the residual errors of the multiple-regression model of the 
Square Root of Detect Time mean.  We fit the distribution to a normal 

curve and perform a KSL Test for goodness of fit, which the distribution 
fails. 

Even though our model violates the normality of residuals assumption, we present 

it regardless.  The factors within the model sorted by significance are presented in  

Figure 28.  Dairy surveillance parameters, especially the amount of delay between when 

a certain premises is inspected and when it is determined to be infected 

(DelayToDetection), are the most significant factors.  These three parameters all have  
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positive coefficients, which means that as they increase, so does the DetectTime mean.  

The LocalSpreadMultiplier, in contrast, has a negative coefficient.  So, as the local spread 

is allowed to spread longer distances, the detection time decreases. 

 

 

Figure 28.   Sorted Parameter Estimates of the Square Root of Detect Time mean 
model.  The “Term” column lists the factors used in the model.  The 

“Estimate” is the parameter estimate for the linear model, and the “Std 
Error” is the standard error of the parameter estimate.  The “t-Ratio” is the 
ratio of the parameter estimate to the standard error and is used as the test 
statistic when testing the factor’s importance to the model.  The horizontal 
bars graphically show the relative t-ratio of each factor in relation to the 

most important factor, while the Prob>|t| shows the probability of 
obtaining a t-ratio greater than the factor t-ratio at random.  This is called 

the p-value.  Overall, this figure shows the relative importance of the 
surveillance procedures at dairies to the mean detection time of the first 

detected premises.  Appendix A describes the parameters modeled in 
detail. 

4. Partition Tree Model 

We now compare our multiple-regression model to a partition tree.  As described 

earlier, the partition tree splits the factors sequentially in order to maximize the difference 

in the mean of continuous factors, or the probability of categorical factors, so that the 

nodes, or leaves, are as much alike as possible.  We choose to split the factors a total of 

27 times in order to achieve an R2 of 0.39; a similar explanation of the variance as the 

multiple-regression model.  The three most significant factors in the partition tree model 

are identical to the multiple-regression model, and include the three parameters 

describing the surveillance operations on dairy premises.  The first split in the model is 



 77

on the amount of delay between when premises are inspected and when they are 

determined to be infected (DelayToDetection).  The optimal split point is at 3.411.  This 

means that the average Detect Time of those design points tested in the model, which 

have DelayToDetection parameter settings of less than 3.411 days, are most different 

from those with settings above 3.411 days.  In this case, the mean Detect Time of those 

design points with the DelayToDetection setting below 3.411 is 5.23 days, and the mean 

of those design points above 3.411 is 6.67 days.  We display the contributions of the 

significant parameters in Figure 29. 

 

 

Figure 29.   Partition Tree model for Detect Time mean.  The “Term” column shows 
the most significant factors affecting the mean detection time.  Here, those 
factors are the surveillance operations on dairy premises.  The “Number of 

Splits” column shows how many times the partition tree was split on a 
factor.  The “SS” column shows the sum, over the multiple splits, of the 

squared differences between the two leaves into which the factor was split.  
Larger numbers show a larger distance between the means of the leaves.  

The horizontal bars simply show the relative contribution of the factors in 
terms of the first factor displayed.  For example, 525.2224 is 

approximately 20% of 2626.9895.  Therefore, the second bar is 
approximately 20% of the size of the first bar. 

E. MEAN NUMBER OF INFECTED PREMISES 

As discussed in Section A, the correlations between the MOEs we use are high.  

So, here we show the models developed for the mean number of infected premises as a 

proxy for the other MOE.  We first describe a multiple-regression model, followed by a 

partition tree. 
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1. Distribution of Infected Premises 

We begin by analyzing the distribution of the mean Infected Premises across all 

factors and starting scenarios (see Figure 30).  The mean is 466 premises, with a standard 

deviation of 1,324 premises, and the distribution is extremely right skewed.  The 

maximum mean number of infected premises is 7,700, which was the maximum we set in 

the control file of the simulation.  We explore this upper bound further in Section F. 

 

 

Figure 30.   Distribution of Infected Premises means across all factors and scenarios 

2. Multiple-Regression Model 

As we did in our analysis of Detection Time, we use a forward AIC stepwise 

technique to create the multiple-regression model.  We allow the algorithm to search 

through all noise and decision factor main effects and second order polynomials to 

develop a model.  The fitted model contains 52 terms that explain about 21% of the 

variability in the data and produces an adjusted R2 of 0.213 (see Figure 31). 
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Figure 31.   Fitted model for Infected Premises mean.  Adjusted R2 is 0.213.  Actual 
vs. Predicted responses are plotted and an Analysis of Variance (ANOVA) 

is shown, indicating that the model is significant, with a p-value of < 
0.0001. 

We now check the adequacy of the model based on the four assumptions, of 

which the model passes two.  Independence is satisfied because all iterations and all 

design points were randomly chosen, and the residual mean is zero, as shown in  

Figure 32.  However, the residuals do not display constant variance (see Figure 32), nor 

are they normally distributed (see Figure 33). 
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Figure 32.   Residual by Predicted plot of a multiple -egression model of the mean 
number of Infected Premises.  The mean of the residuals is 0, identified by 

the blue dashed line.  We have removed the heteroscedasticity. 

 

Figure 33.   Distribution of the residual errors of the multiple-regression model of the 
mean number of Infected Premises.  We fit the distribution to a normal 

curve and perform a KSL Test for goodness of fit, which the distribution 
fails. 

In order to address the constant variance and normality assumptions, we again 

attempt to transform the response variable with one of several methods described in 

Section D.3.  The usual transformations do not correct the problems, however, so we 

apply a Box-Cox transformation of the Infected Premises mean.  Box and Cox (1964) use 

a method of maximum likelihood to estimate a power to be applied to the response 

variable in order to correct these problems.  The resulting model contains 35 terms and  
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has an adjusted R2 of 0.323 (see Figure 34).  The transformation corrects the 

heteroscedasticity (see Figure 35) and the residuals appear normal, even though they fail 

the goodness of fit test (see Figure 36). 

 

Figure 34.   Fitted model for Box-Cox transformed Infected Premises mean.  Adjusted 
R2 is 0.323.  Actual vs. Predicted responses are plotted and an Analysis of 
Variance (ANOVA) is shown indicating that the model is significant with 

a p-value  
of < 0.0001. 

 

Figure 35.   Residual by Predicted plot of multiple regression model of the Box-Cox 
transformed mean number of Infected Premises.  The mean of the 

residuals is 0, identified by the blue dashed line.  We have removed the 
heteroscedasticity. 
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Figure 36.   Distribution of the residual errors of the multiple-regression model of the  
Box-Cox transformed mean number of Infected Premises.  We fit the 

distribution to a normal curve and perform a KSL Test for goodness of fit, 
which the distribution fails, even though the plots look fairly normal 

The factors within the model sorted by significance are presented in Figure 37.  

The four most significant factors to this model are all noise factors including the local 

spread, the probability of transmission, the overall movement distances, and some 

indirect movement types.  The most significant decision factors include the surveillance 

procedures at dairies, the size of the surveillance zone, the number of resources available 

to depopulate, and the length of time between the first detection and when the full amount 

of depopulation resources are available. 
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Figure 37.   Sorted Parameter Estimates of the Box-Cox transformed mean number of 
Infected Premises model.  This shows that noise factors including the local 

spread, the probability of transmission, the overall movement distances, 
and some indirect movement types, are the most significant factors to the 
mean number of infected premises.  The most significant decision factors 
include the surveillance procedures at dairies, the size of the surveillance 
zone, the number of resources available to depopulate, and the length of 

time between the first detection and when the full amount of depopulation 
resources are available.  Appendix A describes the parameters modeled in 

detail. 

3. Partition Tree Model 

We again compare our multiple-regression model to a partition tree.  We choose 

to split the factors a total of 50 times in order to achieve an R2 of 0.31; a similar 

explanation of the variance as the multiple-regression model (see Figure 38).  The noise 

factors are still prevalent within the model, with the Local Spread Multiplier as the first 

split.  It splits at 1.5788, which is equivalent to stating that the distance bands for this 

parameter are increased from the base case of 1,000 m, 2,000 m, and 3,000 m to 1,578 m, 

3,157 m, and 4,736 m, respectively.  Interestingly, the parameter describing the total 

capacity to depopulate animals is the second split.  It splits for those observations with a 

Local Spread Multiplier of greater than 1.5788 at 0.638.  This is equivalent to having 

resources to depopulate 12,760 animals per day.  The detection probability for sheep in 

the surveillance zone is a factor that is not significant in any of the models up to this 

point, but is in this model. 
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Figure 38.   Partition Tree model for Infected Premises mean.  The most significant 
noise factors affecting the mean number of infected premises are the Local 

Spread Multiplier, the premises probability of transmission, and the 
detection probability of infected sheep in the surveillance zone.  The most 

significant decision factors are the number of resources available to 
depopulate, the amount of ramp-up time until all depopulation resources 

are available, and the amount of delay between surveillance visits at 
likeDairy premises after the first infected premises of the outbreak is 

detected. 

F. MODELS TO EXPLORE THE POTENTIAL FOR A LARGE OUTBREAK 

One concern we have with the multiple-regression and partition tree models for 

the mean number of Infected Premises is that we set a maximum number of this MOE 

within the simulation.  Because of this, we feel that the model may be underestimating 

the mean over all simulation iterations since outbreaks were stopped once the number of 

infected premises reached 7,700.  Therefore, we present a new MOE describing the 

percentage of times a design point reached 7,700 infected premises.  This MOE can be 

thought of as a surrogate for whether the design point has the potential to be a large 

outbreak.  In this section, we describe the results obtained with the new MOE using a 

multiple-regression model and with a partition tree. 
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1. Multiple-Regression Model 

We add another column to our data with the frequency that the design point 

reached the maximum number of infected premises out of the 100 iterations, and use this 

new column as the response variable in a multiple-regression model.  We exclude five 

out of the seven starting scenarios because they rarely reach the maximum infected 

premises limit and focus on those that do.  The starting scenarios modeled using this 

MOE are the High Animal Density, High Premises Density, and Port of San Francisco 

scenarios.  Again, we use a forward AIC stepwise technique, and allow the algorithm to 

search through all noise and decision factor main effects, two-way interactions, and 

second order polynomials to develop a model.  The fitted model contains 45 terms, which 

produces an adjusted R2 of 0.402 (see Figure 39). 

 

Figure 39.   Fitted model for Frequency Iterations with the Maximum Number of 
Infected Premises.  Adjusted R2 is 0.402.  Actual vs. Predicted responses 
are plotted and an Analysis of Variance (ANOVA) is shown indicating 

that the model is significant, with a p-value of < 0.0001. 

We again check the adequacy of the model based on the four assumptions, of 

which the model passes two.  Independence is satisfied because all iterations and all 

design points were randomly chosen, and the residual mean is zero.  However, the 
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residuals do not display constant variance, nor are they normally distributed.  Again, we 

attempt to transform the MOE using the usual methods, and ultimately use a log 

transformation to obtain the model shown in Figure 40.  The resulting model includes 45 

terms and produces an adjusted R2 of 0.50.  The transformed model now displays 

constant variance and the residuals appear normal, even though they fail the goodness of 

fit test (see Figures 41 and 42). 

 

Figure 40.   Fitted model for the Log of Frequency Iterations with the Maximum 
Number of Infected Premises.  Adjusted R2 is 0.50.  Actual vs. Predicted 
responses are plotted and an Analysis of Variance (ANOVA) is shown 

indicating that the model is significant with a p-value of < 0.0001. 

 

Figure 41.   Residual by Predicted plot of the multiple-regression model of the log 
transformed Frequency of Iterations with the Maximum Number of 

Infected Premises.  The mean of the residuals is 0, identified by the blue 
dashed line.  We have removed the heteroscedasticity. 
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Figure 42.   Distribution of the residual errors of the multiple-regression model log 
transformed Frequency of Iterations with the Maximum Number of 

Infected Premises.  We fit the distribution to a normal curve and perform a 
Shapiro-Wilk W Test for goodness of fit, which JMP uses when the 
number of data points is less than 2,000.  The distribution fails even 

though the plots appear fairly normal. 

The factors within the model sorted by significance are presented in Figure 43.  

The two most significant factors to this model—the local spread multiplier and the farm 

probability of transmission—remain the same as for the infected premises MOE 

discussed in Section E.  However, the next two most significant factors are now the 

decision factors depopulation resources available per day and the amount of ramp-up 

time until all depopulation resources are available.  The other significant factors are 

similar to those in the model for the infected premises MOE. 
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Figure 43.   Sorted Parameter Estimates of the log transformed Frequency of Iterations 
with the Maximum Number of Infected Premises model.  This shows that 
noise factors, including the local spread, the probability of transmission, 
the overall movement distances, and some indirect movement types, are 
the most significant factors to the model.  The most significant decision 

factors include the number of resources available to depopulate, the length 
of time between the first detection and when the full amount of 

depopulation resources are available, the surveillance procedures at 
dairies, and the size of the surveillance zone. 

2. Partition Tree Model 

We again compare our multiple-regression model to a partition tree.  We choose 

to split the factors a total of 20 times in order to achieve an R2 of 0.52, a similar 

explanation of the variance as the multiple regression model (see Figure 44).  The noise 

factors are still prevalent within the model, with the Local Spread Multiplier as the first 

split.  It splits at 1.5788, which is identical to the first split of the mean of Infected 

Premises partition tree.  The next split is on the length of time between the first detection 

and when the full amount of depopulation resources is available.  It splits for those 

observations with a Local Spread Multiplier of greater than 1.5788 at nine days.  The 

means of the two leaves created by this split are 10.49 for outbreaks, where the resources 

are available before 9 days, and 39.85 days for those greater than or equal to 9 days.  This 

is like saying that for those outbreaks whose local spread can reach distances of  
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approximately 4,700 m, having the full number of depopulation resources within nine 

days will, on average, reduce the number of times the model will reach 7,700 premises 

infected from 39.85 times to 10.49 times out of 100 iterations. 

 

 

Figure 44.   Partition Tree model for Infected Premises mean.  The most significant 
noise factors affecting the mean number of infected premises are the Local 

Spread Multiplier and the farm probability of transmission.  The most 
significant decision factors are the amount of ramp-up time until all 

depopulation resources are available, the number of resources available to 
depopulate, the general surveillance frequency of all non-dairy-like 

premises prior to the first premises of the outbreak is detected, and the 
amount of delay between surveillance visits at likeDairy premises after the 

first infected premises of the outbreak is detected. 
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VI. CONCLUSIONS 

The results of Chapter V should not be interpreted as individual predictions on 

outbreak scenarios.  Instead, we vary the model 400,000 times to attempt to indicate 

which parameters are the most important when modeling an outbreak in a modern,  

state-of-the-art simulator, ISP.  In Chapter I, we pose four research questions in order to 

focus our analysis.  Based on the results in Chapter V, we address those initial research 

questions as well as discuss a surprising finding about depopulation resources.  We 

organize the sections of this chapter in the following manner: 

 Disease Spread Parameters:  Which disease spread parameters are most 

important to the simulation of an outbreak of FMD in California? 

 Control Area and Surveillance Zone Sizes:  In response to a variety of 

outbreak scenarios, what are the optimal sizes of Control Areas and 

Surveillance Zones that efficiently eradicate the disease and also minimize 

the economic impact to the livestock industry? 

 Surveillance Procedures:  How often should livestock facilities be 

screened for FMD prior to and during an outbreak? 

 Starting Scenarios:  Of the outbreak scenarios modeled in this thesis, 

which are the most dangerous for California? 

 Depopulation Resources:  How do the availability and number of 

depopulation resources affect the spread of FMD in California? 

A. DISEASE-SPREAD PARAMETERS 

Several disease parameters affect all of the models we develop.  The three that 

seem most significant to our models are:  the Local Spread Multiplier, the All 

Movements Distance Multiplier, and the Farm Probability of Transmission.  Below, we 

discuss these disease-spread parameters, as well as a parameter we expected to be more 

significant—the movements between farms and markets. 

1. The Local Spread Multiplier is a significant factor in all of the 

regressions and all of the partition trees.  Its effect on the mean detection time is negative, 
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meaning that as the local spread is allowed to move farther away from the infected 

premises, the mean detection time decreases.  This is probably because the farther the 

virus moves, the more premises it comes in contact with.  This leads to more premises 

being infected and increases the all of the surveillance factors probabilities to detect the 

disease. 

The Local Spread Multiplier also has a significant effect on the size of the 

outbreaks, measured both by mean number of infected premises and by the frequency of 

iterations reaching 7,700 infected premises.  Both MOE partition trees split first on the 

Local Spread Multiplier and they split at the same point.  This suggests that there may be 

either an issue with the simulator at this distance of spread or that when the randomized 

premises were located during the development of the data, this distance was significant in 

the calculation.  Whether or not this distance is truly significant is difficult to determine 

since the locations of the premises are not exact.  The local spread parameter serves as a 

“catch all” parameter describing the spread of the disease when we are unable to 

determine a reason for a premises to be infected other than its proximity to another 

infected premises.  So, as we begin to understand more about how the virus spreads, the 

impact of the local spread parameter will likely be decreased because infections will be 

able to be attributed to other causes. 

2. The All Movements Distance Multiplier  

The all Movements Distance Multiplier is significant in all of the regression 

models, but is not significant in any of the partition trees.  This parameter is similar to the 

Local Spread Multiplier in that it controls how far movements of infected animals can 

travel, but it is different in that movements only occur at specific rates.  So, its effect on 

how many other premises are infected is less direct than the local spread parameter.  By 

being able to move greater distances, this parameter increases the chances that the virus 

will spread to a geographic area outside of the effect of local spread, or beyond the effect 

of implemented control measures.  This increases the probability that certain premises are 

infected even though they at a lower risk from local spread or in locations outside of  

 

 



 93

restricted areas.  The other significant characteristic of this parameter is that its effect is 

greatly diminished once the first detection of infected premises is made and movement 

restrictions are put in place. 

3. The Farm Probability of Transmission  

The Farm Probability of Transmission is significant in all of the models, which is 

not surprising.  The higher the probability of transmission is, the larger the outbreak is, 

and the shorter the detection time is—since there is more disease to find.  The fact that 

this parameter shows up in all of our models is more of a confirmation that the simulation 

is running correctly than an insight into the disease spread. 

4. Market Movement Type 12  

Market Movement Type 12 was not a factor in any of our models.  This was 

likely because the experimental design did not sufficiently vary the market movement 

parameters and thus it is difficult to draw conclusions on their effects on the MOE.  

However, the preliminary results of the plausibility models described in Chapter III are 

consistent with the literature in showing that market movements are a significant 

contributor to FMD spread. 

B. CONTROL AREA AND SURVEILLANCE ZONE SIZES 

The sizes of the control area and the surveillance zone were not as significant to 

our models as we expected at the beginning of our research.  The size of the surveillance 

zone was always more significant than the size of the control area in our models.  This is 

counterintuitive since movement restrictions are tighter and surveillance for the disease is 

conducted more frequently in the control areas than in the surveillance zones.  It may be 

that since the disease parameters so dominated our models that the effects of these zone 

sizes seemed insignificant by comparison.  Perhaps once we have a better understanding 

of the limits of the disease parameters, the sizes of these zones will have more impact on 

the models. 
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C. SURVEILLANCE 

Of the 35 surveillance factors we model, two types of surveillance seem to have 

the greatest significance in our models.  First, all forms of likeDairy surveillance 

consistently showed up as significant in our models.  This is probably because 

surveillance is done so frequently on these types of premises that if the virus does infect 

one of them, it is detected quickly and therefore controls can be instituted quickly.  

Second, the delay until detection parameters—especially on likeDairy premises, but also 

generally and on traced premises—was significant to all of the regression models and 

most of the partition trees.  This would indicate that one way to have an effect on limiting 

the size of the outbreak would be to prioritize dairy premises during lab testing so that the 

amount of time between initial testing and confirmation of the virus is kept to  

a minimum. 

D. STARTING SCENARIOS 

The most dangerous starting scenario in our model was the high animal density 

model, which is not surprising.  Our model reinforces the choice made by other 

researchers, which is to focus on these areas of California when modeling this disease.  

However, all of the starting scenarios were able to generate large outbreaks given the 

correct combinations of the other parameters.  Moreover, two scenarios—the high 

premises dense and the San Francisco Port—were able to consistently produce large 

outbreaks.  This would suggest that the areas in Northern California could also be 

important to study in more detail.  One could also argue that since the San Francisco Port 

is able to consistently produce large outbreaks, maintenance of surveillance resources at 

international ports is justified.  Since we did not observe the same consistency of large 

outbreaks from the Los Angeles Port scenario, however, we feel that additional 

exploration of port scenarios is needed before making that claim. 

E. DEPOPULATION RESOURCES 

Two decision factors that were consistently significant to our models were the two 

depopulation resource parameters that described how many resources were available per 

day and how quickly those resources could be available.  The partition trees split on these 
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parameters at about 12,000 animals per day and at a ramp-up time of less than nine days.  

These factors are probably so significant because there was not a preemptive culling 

strategy implemented in our model and because the local spread probabilities were not 

reduced based on detection of the disease on a premises.  So, in order to control the 

disease, depopulation resources had to be readily available in large supply to quickly 

depopulate premises that became infected.  If perfect biosecurity was established at the 

time of quarantine, and aerosol transmission was not a significant factor, then the disease 

should not spread from the premises.  Therefore, our conclusions about the depopulation 

resources are also linked to the fact that we did not model the effect of biosecurity on the 

local spread parameters.  Sensitivity analysis should be conducted to determine how these 

two parameters interact. 

F. SUMMARY 

Even though our models had relatively low adjusted R2 values, we believe they 

still give us a fair amount of insight into the characteristics of the spread and control of an 

FMD outbreak in California.  We believe that there are two major takeaways from our 

research for policymakers, and some for FMD researchers.  We present the former below, 

and the latter in Chapter VII. 

 The most important disease surveillance is done at likeDairy premises.  

We see the surveillance parameters of likeDairy premises as significant to 

both the detection time and size of outbreak regression models and 

partition trees.  This is likely because these types of premises usually have 

personnel on staff who have daily contact with their animals and that the 

clinical signs of infection in cattle are generally easier to detect than in 

other species.  These characteristics lead to decreased time until detection, 

which leads to quicker implementation of controls and smaller outbreaks.  

Continued research into how to make this type of surveillance as efficient 

as possible could have a significant impact on how large an outbreak 

becomes if it ever occurs in California. 
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 The size and availability of depopulation resources are significant in all of 

the size of outbreak models.  Unlike many other authors’ models and due 

to our understanding of the current views in California, we do not use 

preemptive depopulation in our model.  Since we only depopulate detected 

premises and do not explore the effects of biosecurity on the local spread 

from those premises, we must accomplish depopulation as efficiently as 

possible to prevent or limit the spread of the disease.  This requires the 

availability of large amounts of resources in a timely matter.  Our model 

suggests the amount of resources necessary could be the ability to 

depopulate over 12,000 animals per day within nine days of the first 

detection of infected livestock premises.  If the state does not plan on 

using preemptive depopulation, then this magnitude of depopulation 

resources should be readily available on a very short ramp-up timeline to 

facilitate the rapid control of an FMD outbreak. 
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VII. RECOMMENDATIONS FOR FUTURE RESEARCH 

We feel that there are several areas where our research could be improved.  When 

discussing the benefits of a simulation experimental design, Sanchez (2008, p. 83) writes,  

“This process typically follows an iterative cycle, where insights gained from 

simulation experiments can be used in many ways.  Results can be used to 

evaluate or improve the simulation model.  By identifying important factors, 

interactions, and nonlinear effects, the experimenter can improve their 

understanding, find robust solutions, or raise questions to be explored in 

subsequent experiments.  Thresholds, plateaus, or other interesting features of the 

response surfaces might provide guidance about situations that are particularly 

good (or particularly bad).” 

This thesis is one step in the iterative cycle of which Sanchez writes.  During the 

rest of this chapter, we will discuss the changes that are needed or which would be 

interesting to explore in the ISP control file, the experimental design, the output statistics, 

and more general areas we feel should be further researched regarding the spread of FMD 

in California. 

A. ISP CONTROL FILE 

The development of the ISP control file was a difficult task due to the complexity 

and sheer number of parameters included in our simulation.  Below is a list of the 

changes or fixes we recommend to those who would conduct follow-on research using 

ISP to model an outbreak of FMD in California. 

 Parameterize Dairy Tanker movement as “Fixed Routes”:  Our results 

indicate that the diary premises in California have a significant impact on 

FMD control, and those premises also make up a large part of California’s 

agricultural economic output.  Our model could be improved by 

specifically modeling the movements of vehicles on and off of dairy 

premises.  Data on tanker movements would be extremely useful, whether 
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gathered from industry groups, where the data resides, or from 

government organizations interested in controlling FMD. 

 Parameterize Airborne Spread:  Airborne spread can be an important 

factor for some FMD serotypes (Stevenson, 2012).  Future models could 

benefit from adding predominant winds within the state.  This may be 

especially important for areas of the state that are not within a “local 

spread” distance from a large farm, which can produce significant virus 

plumes, but may be downwind of one that is farther away. 

 Surveillance Zone Parameters:  In our base control file, we did not 

correctly use the option to preempt a premises being added to the 

surveillance zone if it had already been added to a control area.  This did 

not affect our results since we corrected for this oversight in the output 

data.  Future researchers should set the parameter “ExcludeFarmsInZones” 

to the zone name for the control area. 

 County Zones:  Radial zones are difficult to manage during an outbreak 

and would not generally be used under USDA guidelines (USDA, 2011).  

More likely, counties or similar-sized areas would be designated as certain 

zones or areas.  ISP does not currently have the functionality to apply 

zones in this manner, but there may be ways to accomplish this in future 

updates to the software. 

 Restricting Movements on Farm Class:  Our model restricts all 

movements within a zone equally after the first detection of infected 

premises.  This is perhaps not the best strategy given that some premises 

are more infectious, or have other applicable characteristics, than others.  

If strategies can be found that reduce the impact of movement restrictions 

on some premises, the overall impact on the California livestock industry 

could be reduced.  The first step would be to quantify how much  
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movement restrictions actually hurt a livestock premises and then attempt 

to minimize the overall economic impact on the state, as opposed to 

surrogates such as the number of premises affected or infected. 

 Probabilities of Contact Between Farm Types:  Our model does not use 

the “RestrictOnAnimalType” or “RestrictOnFarmClass” parameters for 

direct and indirect movements.  These parameters allow the user to specify 

restrictions to the destinations of specific movements.  An example of this 

type of restriction is for direct contact movements originating from small 

swine premises to only be allowed to have destinations at other swine 

premises.  Or, more specifically, for those same movements to only be 

allowed to have destinations at other small swine premises.  We did not 

use them due to the complexity they add, as well as the fact that only one 

animal type is present on each of the premises in our data.  However, 

adding these parameters would more closely resemble actual contact 

between premises. 

 Regional Movement Standstill:  Pineda-Krch et al. (2010) found that 

setting up a statewide movement ban on all livestock movements was 

beneficial in their research.  While we believe that a statewide ban may 

not be necessary, given the large distances between livestock production 

regions within the state, we feel that future research should compare the 

impact of statewide “movement standstills” to more regionalized 

movement restrictions such as overlapping northern, central, and southern 

regions.  ISP does have parameters to allow for such a comparison. 

 Regional California Dataset:  Due to the number of and geographic 

distances between the premises in our dataset, the development of smaller 

regional models, or a small mock “California,” would allow closer 

examination of each factor.  This may also help to more easily evaluate 

model behavior and identify problems with parameterization or bugs in the 

implementation of the software. 
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B. DESIGN OF THE EXPERIMENT (DOE) 

The most difficult part of designing the experiment was in setting the high and 

low limits of each parameter studied.  Based on the results of our model, we suggest the 

following modifications to the DOE: 

 Surveillance Rates:  The surveillance rates’ high and low limits were 

generally set fairly wide apart in order to estimate their overall effect 

within the model.  Now that we understand their importance to the model, 

more thought and expertise should be applied towards finding more 

realistic rates for each surveillance type.  This could then give more 

fidelity to where limited surveillance resources should be applied. 

 Farm Probability of Transmission:  Our DOE currently applies low and 

high limits on farm probability of transmission from sheep and goats to 

0% and 50%, respectively.  We then apply a function to that probability in 

order to determine the probabilities for cattle and swine farms.  After 

further review, this function for cattle may not allow probabilities to be as 

high as they should be when modeling direct and indirect contact between 

animals.  We believe the exponent used should be closer to 15 instead of 

1.82, in order to better model how much virus is shed by cattle by means 

other than aerosol, which is how we determine the current exponent used 

in the function. 

 Rate of Market Movement:  McLaws and Ribble (2007) propose that the 

factor that contributes most to an FMD outbreak becoming a large is virus 

movement through markets.  However, we do not vary the number of 

farm-to-market movements per time period in our current design due to 

insufficient understanding of this parameter in the literature.  Future 

research should vary this rate based on subject matter expert 

understanding or funding should be made available to collect data in order 

to better understand the spread of the virus prior to the first detection of 

infected premises. 
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 Local Spread Multiplier Limits:  As discussed in Chapter VI, local 

spread is a dominant factor within our model.  Since the first splits within 

all the partition trees we use in our analysis are on a local spread multiplier 

of approximately 1.6, which equates to a maximum distance band of 

roughly 4,800 m, it may merit checking the ISP software for 

idiosyncrasies at around the 5,000 m value.  If such an anomaly exists 

within the software, our model may have more reliable results if the 

maximum local spread distance can be kept under that size. 

 Greater SME Input and Review:  The DOE high and low limits were set 

to widely vary the parameter settings as a first step in observing the effects 

of those factors.  Now that we understand a bit more about these effects, 

SMEs should be used to narrow these ranges and therefore obtain more 

realistic outbreak results.   

C. ADDITIONAL OUTPUT 

In order to organize the simulation output for analysis, we use several scripts to 

read the output files developed by ISP during the simulation and calculate the MOEs we 

use for our analysis.  Knowing the results of our analysis, we believe that three additional 

measures should be calculated by this script in order to further our understanding of the 

outbreaks simulated. 

 Day of last infection and/or day of last detection during each 

simulation iteration:  Currently, our model does not have a way to 

measure if or when the outbreak ended during the course of the 

simulation.  For example, setting a time period of a certain number of 

days, say 28 days, since a detection would declare the epidemic over.  

Having this information would allow us to better understand the 

effectiveness of the control strategies. 

 The number of infected premises when the first detection occurs 

during each iteration:  We believe that we would better understand the 

relationship between the outbreak size and detection time if we knew how 
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fast the silent spread, the disease spread prior to first detection, is moving.  

Our belief is that when the outbreak spreads quickly, the virus is easier to 

detect.  This is because we sample the susceptible population at a certain 

rate, and when more premises are infected, the time it takes to find an 

infected facility decreases.  Having the number of infected premises and 

the types of those premises at the first detection would allow us to more 

fully explore this belief. 

 The locations of the randomly selected initially infected premises:  

These locations should have been preserved in order to conduct some 

additional location-based analysis.  We believe our starting scenarios do a 

good job of capturing the outbreak characteristics based on densities of 

animals or premises, but may not fully capture the geographic 

characteristics of California.  Having more information about the exact 

initially infected premises location may better inform this area. 

 The projected number of infected premises when an iteration reaches 

the maximum number of infected premises:  Since our iterations were 

cut off when the number of infected premises reached 7,700, we had to 

develop a surrogate MOE to study the largest outbreaks.  If the number of 

infected premises could be accurately projected, a surrogate MOE would 

not have to be used. 

D. GENERAL RESEARCH 

This thesis makes several assumptions because of either our lack of understanding 

or by an absence in the literature of several areas impacting a potential outbreak of FMD 

or any foreign animal disease in California.  In this section, we describe two areas we feel 

need additional emphasis, research, or published information by the scientific community 

to inform the modeling of livestock diseases in the state. 

 Better knowledge of facility locations/species mix:  Because the data we 

used to construct our model were developed from publicly available, 

county-level aggregated statistics of livestock premises, they only 
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approximate the locations, sizes, animal types, and production types of the 

livestock premises in the state.  Since ISP uses all of these characteristics 

to determine how the virus spreads, if the actual characteristics differ 

greatly from the approximate characteristics, the virus spread could also 

vary greatly. 

E. KNOWLEDGE OF DIRECT AND INDIRECT MOVEMENT RATES AT 
LOCATIONS OUTSIDE OF CENTRAL CALIFORNIA:   

Since the direct and indirect movement distances and probabilities were generated 

from a study of only central California, we may be over or underestimating the outbreaks 

in other areas of the state.  Having better knowledge of these movements in other areas 

could help in better defining high-risk locations/regions of the state. 

F. FINAL REMARKS 

FMD is a fast-moving disease with potentially catastrophic consequences for 

California and the United States.  It is important that policy makers are prepared to 

respond effectively and immediately if and when an outbreak occurs.  Circumstances and 

details of an outbreak can greatly affect the behavior and consequences.  There will not 

be time for model development during a crisis, so timely analysis requires having the 

appropriate models in reserve.  This thesis takes an important step toward this ultimate 

objective. 
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APPENDIX A. DESCRIPTION OF THE DESIGN OF 
EXPERIMENT 

Factor name

Level Used in 
Plausiblity 

Model Low Level High Level Factor Description Methodology/Reference
MovementType1:NumberPerTimePeriod[114|

214|314|24|34]
0.08 0.01 0.14 Movement_Farm_Farm_Backyard:  Direct Contact 

movement rate from backyard premises (All Species).  

Poisson Distribution with means varied between low and 

high levels.  Types affected:  114|214|314|24|34 

Developed from Table 2 of Bates, et al (2001).  High and 

low levels equal the high and low 95% CI from the table 

divided by 30 to get a daily rate.  Premise type in table is 

Backyard.  

MovementType2:NumberPerTimePeriod[310] 0.29 0.01 0.56 Movement_Farm_Farm_Goat:  Direct Contact 

movement rate from Goat premises.  Poisson 

Distribution with means varied between low and high 

levels.  Types affected:  310

Developed from Table 2 of Bates, et al (2001).  High and 

low levels equal the high and low 95% CI from the table 

divided by 30 to get a daily rate.  Premise type in table is 

Goat.

MovementType3:NumberPerTimePeriod[211|
213]

0.32 0.01 0.6267 Movement_Farm_Farm_Sheep:  Direct Contact 

movement rate from Sheep premises.  Poisson 

Distribution with means varied between low and high 

l l T ff d 211|213

Developed from Table 2 of Bates, et al (2001).  High and 

low levels equal the high and low 95% CI from the table 

divided by 30 to get a daily rate.  Premise type in table is 

ShMovementType4:NumberPerTimePeriod[51|6
1]

0.03 0.0167 0.0433 Movement_Farm_Farm_BeefS:  Direct Contact 

movement rate from smal Beef premises.  Poisson 

Distribution with means varied between low and high 

levels.  Types affected:  51|61

Developed from Table 2 of Bates, et al (2001).  High and 

low levels equal the high and low 95% CI from the table 

divided by 30 to get a daily rate.  Premise type in table is 

Beef < 250.  

MovementType5:NumberPerTimePeriod[53|6
3]

0.06 0.01 0.1 Movement_Farm_Farm_BeefL:  Direct Contact 

movement rate from large Beef premises.  Poisson 

Distribution with means varied between low and high 

levels.  Types affected:  53|63

Developed from Table 2 of Bates, et al (2001).  High and 

low levels equal the high and low 95% CI from the table 

divided by 30 to get a daily rate.  Premise type in table is  

Beef >= 250.  

MovementType6:NumberPerTimePeriod[31|3
2]

0.27 0.1433 0.4033 Movement_Farm_Farm_DairyS:  Direct Contact 

movement rate from Small Dairy premises.  Poisson 

Distribution with means varied between low and high 

levels.  Types affected:  31|32

Developed from Table 2 of Bates, et al (2001).  High and 

low levels equal the high and low 95% CI from the table 

divided by 30 to get a daily rate.  Premise type in table is  

Dairy < 1000.  

MovementType7:NumberPerTimePeriod[33] 0.55 0.3967 0.6967 Movement_Farm_Farm_DairyL:  Direct Contact 

movement rate from Large Dairy premises.  Poisson 

Distribution with means varied between low and high 

levels.  Types affected:  33

Developed from Table 2 of Bates, et al (2001).  High and 

low levels equal the high and low 95% CI from the table 

divided by 30 to get a daily rate.  Premise type in table is   

Dairy >= 2000.  

MovementType8:NumberPerTimePeriod[41] 0.02 0.01 0.0367 Movement_Farm_Farm_Calf_HeiferS:  Direct Contact 

movement rate from Small Calf/Heifer premises.  

Poisson Distribution with means varied between low and 

high levels.  Types affected:  41

Developed from Table 2 of Bates, et al (2001).  High and 

low levels equal the high and low 95% CI from the table 

divided by 30 to get a daily rate.  Premise type in table is 

Calf/Heifer < 250. 

MovementType9:NumberPerTimePeriod[43|7
3]

0.99 0.01 1.96 Movement_Farm_Farm_Calf_HeiferL:  Direct Contact 

movement rate from Large Calf/Heifer premises.  

Poisson Distribution with means varied between low and 

high levels.  Types affected:  43|73

Developed from Table 2 of Bates, et al (2001).  High and 

low levels equal the high and low 95% CI from the table 

divided by 30 to get a daily rate.  Premise type in table is 

Calf/Heifer >= 250.  

MovementType10:NumberPerTimePeriod[12
1|131|151|161]

0.16 0.0367 0.2833 Movement_Farm_Farm_SwineS:  Direct Contact 

movement rate from Small Swine premises.  Poisson 

Distribution with means varied between low and high 

levels.  Types affected:  121|131|151|161

Developed from Table 2 of Bates, et al (2001).  High and 

low levels equal the high and low 95% CI from the table 

divided by 30 to get a daily rate.  Premise type in table is 

Swine < 2000.

MovementType11:NumberPerTimePeriod[15
3|163]

0.67 0.0067 1.3267 Movement_Farm_Farm_SwineL:  Direct Contact 

movement rate from Large Swind premises.  Poisson 

Distribution with means varied between low and high 

levels.  Types affected:  153|163

Developed from Table 2 of Bates, et al (2001).  High and 

low levels equal the high and low 95% CI from the table 

divided by 30 to get a daily rate.  Premise type in table is 

Swine >= 2000.

MovementType14:NumberPerTimePeriod[41] 0.03 0.01 0.046 IDMovement_Size1: Indirect Contact movement rate 

for Small Calf/Heifer premises.  Poisson Distribution with 

means varied between low and high levels.  Types 

affected: 41

Developed from Table 3 of Bates, et al (2001).  Employee 

and Friend Visitor types were removed due to our feeling 

that the probabilities of spread from those two types are 

different from the rest of the types, and that they are 

accounted for in the "Local Spread" of the disease.  High 

and low levels equal the high and low 95% CI from the 

table divided by 30 to get a daily rate.  If the low 95% 

Confidence bound was less than 0 after removing 

Employees and Friends, .01 was used instead.

MovementType15:NumberPerTimePeriod[24|
34|114|214|314|310|211|213|51|61|53|63|121|1

31|151|161]

0.16 0.01 0.3143 IDMovement_Size2: Indirect Contact movement rate 

for a group of premise types that have the same order of 

magnitude mean rate.  Poisson Distribution with means 

varied between low and high levels.  Types affected: 

24|34|114|214|314|310|211|213|51|61|53|63|12

1|131|151|161

Developed from Table 3 of Bates, et al (2001).  Employee 

and Friend Visitor types were removed due to our feeling 

that the probabilities of spread from those two types are 

different from the rest of the types, and that they are 

accounted for in the "Local Spread" of the disease. High 

and low levels equal the maximum high and and 

minimum low 95% CI of all of the from the table divided 

by 30 to get a daily rate.   If the low 95% Confidence 

bound was less than 0 after removing Employees and 

Friends, .01 was used instead.

MovementType16:NumberPerTimePeriod[15
3|163]

0.82 0.01 1.626 IDMovement_Size3: Indirect Contact movement rate 

for a group of premise types that have the same order of 

magnitude mean rate.  Poisson Distribution with means 

varied between low and high levels.  Types affected: 

153|163

Developed from Table 3 of Bates, et al (2001).  Employee 

and Friend Visitor types were removed due to our feeling 

that the probabilities of spread from those two types are 

different from the rest of the types, and that they are 

accounted for in the "Local Spread" of the disease. High 

and low levels equal the maximum high and and 

minimum low 95% CI of all of the from the table divided 

by 30 to get a daily rate.   If the low 95% Confidence 

bound was less than 0 after removing Employees and 

Friends, .01 was used instead.

MovementType17:NumberPerTimePeriod[31|
32|43|73]

1.02 0.01 2.0343 IDMovement_Size4: Indirect Contact movement rate 

for a group of premise types that have the same order of 

magnitude mean rate.  Poisson Distribution with means 

varied between low and high levels.  Types affected: 

31|32|43|73

Developed from Table 3 of Bates, et al (2001).  Employee 

and Friend Visitor types were removed due to our feeling 

that the probabilities of spread from those two types are 

different from the rest of the types, and that they are 

accounted for in the "Local Spread" of the disease. High 

and low levels equal the maximum high and and 

minimum low 95% CI of all of the from the table divided 

by 30 to get a daily rate.   If the low 95% Confidence 

bound was less than 0 after removing Employees and 

Friends, .01 was used instead.

MovementType18:NumberPerTimePeriod[33] 0.95 0.862 1.0413 IDMovement_Size5: Indirect Contact movement rate 

for Large Dairy premises.  Poisson Distribution with 

means varied between low and high levels.  Types 

affected: 33

Developed from Table 3 of Bates, et al (2001).  Employee 

and Friend Visitor types were removed due to our feeling 

that the probabilities of spread from those two types are 

different from the rest of the types, and that they are 

accounted for in the "Local Spread" of the disease.  High 

and low levels equal the high and low 95% CI from the 

table divided by 30 to get a daily rate.  If the low 95% 

Confidence bound was less than 0 after removing 

Employees and Friends, .01 was used instead.  
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AllMovements:MovementDistance 1.13 0.25 2 A multiplier applied to the distance bands for all 

movement types simultaneously.  

Developed from Table 3 of Bates, et al (2001). 

Probabilities of the virus moving to these distances 

remains fixed across all movement types, but refer to the 

updated movement bands after the multiplier has been 

applied.  A multiplier = 1 will produce movement bands 

(in meters) of:  0‐19000, 19001‐39000, 39001‐59000, 

59001‐79000, 79001‐99000, 99001‐119000, 119001‐

139000, 139001‐159000, 159001‐179000.

AllFarms:ProbabilityOfTransmission 0.30 0.1 0.5 The constant to be used as the basis to calculate the 

probability of transmission for all farm to farm 

movements (Direct and Indirect).  This number is an 

input to functions to calculate the probability of 

transmission for different species.

High and low levels based on subject matter expert 

opinion for farm to farm direct or indirect contact for 

sheep/goats.  This constant is then an input (p) into the 

following functions based on species type on the source 

farm.  

> Cattle POT = 1‐(1‐p)^1.82

> Swine POT = 1‐(1‐p)^80

AllMarkets:ProbabilityOfTransmission 0.75 0.5 1 The constant to be used as the basis to calculate the 

probability of transmission for all farm to market and 

market to farm movements.  

High and low levels based on subject matter expert 

opinion for farm to market and market to farm direct 

contact.

LocalSpread1:Multiplier 1.13 0.25 2 A multiplier applied to the distance bands for local 

spread.  

Reference:  Personal communication with Mark 

Stevenson on 11 Apr 2012.  Probabilities of the virus 

moving to these distances remains fixed, but refer to the 

updated movement bands after the multiplier has been 

applied.  A multiplier = 1 will produce movement bands 

(in meters) of:  0‐1000, 1001‐2000, 2001‐3000.  Note:  

The probabilities of transmission for Local Spread change 

over time.  Local spread initiates when the farm starts 

showing clinical signs and stops after 6 days.  

LocalSpread1:RelativeSusceptibility[swine] 0.01 0.001 0.1 Suceptability of swine to local spread relative to cattle. Reference (Donaldson et al., 2001; Alexanderson and 

Donaldson, 2002).

LocalSpread1:RelativeSusceptibility[sheep] 0.05 0.005 0.5 Suceptability of sheep to local spread relative to cattle. Reference (Donaldson et al., 2001; Alexanderson and 

Donaldson, 2002).

LocalSpread1:RelativeSusceptibility[goat] 0.05 0.005 0.5 Suceptability of goat to local spread relative to cattle. Reference (Donaldson et al., 2001; Alexanderson and 

Donaldson, 2002).

Infectivity1:TimeToClinicalSigns 4.38 1 8 The Beta value of a LogLogistic Curve with parameters 

(2, Beta, 4.1436) describing the time until clinical signs 

are evident on the premise.

Reference Sanson, et al (2006b).  Table 2 shows a 

cumulative probability table, which we fit to a LogLogistic 

Curve with parameters (0,beta=4.3770,alpha=4.1436)   

The high and low levels adjust the B value are based on 

subject matter expert opinion.

Infectivity1:Infectivity[][][]:DecreaseStart 17.00 12 22 The day after infection when infectivity begins to 

decrease on the premise.

Infectivity1:Infectivity[][][]:DecreaseEnd 33.00 28 38 The day when the premise becomes immune.

Zone2:OutsideRadius1:ControlArea 10001 1 20000 Control Measure:  Outside radius of the control area in 

meters.

Zone3:OutsideRadius1:VaccZone 10000 0 20000 Control Measure: Outside radius of the vaccination zone 

in meters.

Zone4:OutsideRadius1:SurvZone 25000 0 50000 Control Measure: Outside radius of the Surveillance 

zone in meters.

Resource1:PerTimePeriod 1.00 0.5 2 DepopResource:  a multiplier applied to the number of 

animals able to be culled in a day.  When multiplier = 1, 

the animals culled per day (regardless of species) = 

20,000 animals after full utilization day, and 2000 

animals until then.  

20000 animals developed from the total number of 

animals culled during the U.K. FMD outbreak (4.5M) and 

dividing by the number of months the outbreak lasted 

multiplied by 30 to give a daily rate.  i.e.:  20000 = 

4.5M/(7.5*30).

Resource1:TimePeriodStart2:FullUtilization 11.00 2 21 DepopResource:  Day that all Resources are available.  

Up until this day, resources are available at 10% of full 

capacity.

Tests the importance of a quick ramp up to full capacity.  

Early testing with full utilization longer than 21 days led 

to significant increases in the runtime of the design of 

experiment.

Resource2:PerTimePeriod 1.00 0.5 2 VaccinationResource:  a multiplier applied to the 

number of animals able to be vaccinated in a day.  When 

multiplier = 1, the animals vaccinated per day (regardless 

of species) = 20,000 animals after full utilization day, and 

Same as depopulation.  Estimated that the capacity to 

vaccinate would be roughly equivalent to depopulation.

Resource2:TimePeriodStart2:FullUtilization 11.00 2 21 VaccinationResource:  Day that all Resources are 

available.  Up until this day, resources are available at 

10% of full capacity.

Tests the importance of a quick ramp up to full capacity.  

Same high and low levels as depopulation resource.

Surveillance1:VisitDelay:GenSurv 6.00 2 10 GeneralSurveillance:  A probability distribution 

describing the number of time periods that will pass 

before a farm is visited prior to being placed on the 

surveillance list following a detected farm in the area.  

Poisson Distribution with means varied between low and 

high levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance1:VisitFrequency:GenSurv 6.50 3 10 GeneralSurveillance:   A probability distribution 

describing the number of time periods that will pass 

between visits to a farm following the first visit 

(described by the VisitDelay) prior to a farm being placed 

on the surveillance list.  Poisson Distribution with means 

varied between low and high levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Reference Sanson, et al (2006b).  Delphi Conference 

estimated that premise would be most infectious on day 

16 after initial infection, and the infectiousness would 

decrease linearly until day 33.  Here we vary the start and 

end of the infectiousness decline by +/‐ 5 days.

Reference APHIS (2012), Ready Reference 

Guide—Quarantine, Movement Control, and Continuity 

of Business.  Developed radii by adding or subtracting a 

reasonable distance from published minimum guidelines 

for small control areas.  Once other parameter limits 

have been better evaluated, larger zones should be 

studied within the design.
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Surveillance1:DelayToDetection:GenSurv 4.50 2 7 GeneralSurveillance:  A probability distribution 

returning the number of time periods from when the 

visit occurred to when that farm will receive the 

detected state (prior to a farm being placed on the 

surveillance list).  Poisson Distribution with means varied 

between low and high levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance1:DetectionProbability[][][]:Gen
Surv

0.50 0 0.99 GeneralSurveillance:   A function describing the 

probability of an infected farm being detected at each 

visit by the number of time periods since the farm was 

infected.  In our case, the function is constant, but 

would vary between the Lo and Hi values shown.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance1:DetectionProbability[][][shee
p]:GenSurv

0.48 0 0.95 GeneralSurveillance:   A function describing the 

probability of an infected Sheep farm being detected at 

each visit by the number of time periods since the farm 

was infected.  In our case, the function is constant, but 

would vary between the Lo and Hi values shown.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance2:VisitDelay:GeneralAfterFirstD
etection

4.50 2 7 GeneralSurveillance_AfterDetect:  A probability 

distribution describing the number of time periods that 

will pass before a farm is visited after being placed on 

the surveillance list following a detected farm in the 

area.  Poisson Distribution with means varied between 

low and high levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance2:VisitFrequency:GeneralAfterF
irstDetection

4.50 2 7 GeneralSurveillance_AfterDetect:  A probability 

distribution describing the number of time periods that 

will pass between visits to a farm following the first visit 

(described by the VisitDelay) while a farm is on the 

surveillance list.  Poisson Distribution with means varied 

between low and high levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance2:DelayToDetection:GeneralAft
erFirstDetection

3.00 1 5 GeneralSurveillance_AfterDetect:  A probability 

distribution returning the number of time periods from 

when the visit occurred to when that farm will receive 

the detected state.  Poisson Distribution with means 

varied between low and high levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance2:DetectionProbability[][][]:Gen
eralAfterFirstDetection

0.90 0.8 0.99 GeneralSurveillance_AfterDetect:   A function 

describing the probability of an infected farm being 

detected at each visit by the number of time periods 

since the farm was infected.  In our case, the function is 

constant, but would vary between the Lo and Hi values 

shown.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance2:DetectionProbability[][][shee
p]:GeneralAfterFirstDetection

0.83 0.7 0.95 GeneralSurveillance_AfterDetect:   A function 

describing the probability of an infected Sheep farm 

being detected at each visit by the number of time 

periods since the farm was infected.  In our case, the 

function is constant, but would vary between the Lo and 

Hi values shown.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance3:VisitDelay:GeneralSurv_Dairy
_before

1.75 0.5 3 GeneralSurv_Dairy_before:  A probability distribution 

describing the number of time periods that will pass 

before a farm is visited after being placed on the 

surveillance list following a detected farm in the area.  

Poisson Distribution with means varied between low and 

high levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance3:VisitFrequency:GeneralSurv_
Dairy_before

1.75 0.5 3 GeneralSurv_Dairy_before:  A probability distribution 

describing the number of time periods that will pass 

between visits to a farm following the first visit 

(described by the VisitDelay) while a farm is on the 

surveillance list.  Poisson Distribution with means varied 

between low and high levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance3:DelayToDetection:GeneralSur
v_Dairy_before

3.00 1 5 GeneralSurv_Dairy_before:  A probability distribution 

returning the number of time periods from when the 

visit occurred to when that farm will receive the 

detected state.  Poisson Distribution with means varied 

between low and high levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance3:DetectionProbability[][][]:Gen
eralSurv_Dairy_before

0.75 0.5 0.99 GeneralSurv_Dairy_before:   A function describing the 

probability of an infected farm being detected at each 

visit by the number of time periods since the farm was 

infected.  In our case, the function is constant, but 

would vary between the Lo and Hi values shown.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance4:VisitDelay:GeneralSurv_Dairy
_after

1.25 0.5 2 GeneralSurv_Dairy_after:  A probability distribution 

describing the number of time periods that will pass 

before a farm is visited after being placed on the 

surveillance list following a detected farm in the area.  

Poisson Distribution with means varied between low and 

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance4:VisitFrequency:GeneralSurv_
Dairy_after

1.25 0.5 2 GeneralSurv_Dairy_after:  A probability distribution 

describing the number of time periods that will pass 

between visits to a farm following the first visit 

(described by the VisitDelay) while a farm is on the 

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance4:DelayToDetection:GeneralSur
v_Dairy_after

1.75 0.5 3 GeneralSurv_Dairy_after:  A probability distribution 

returning the number of time periods from when the 

visit occurred to when that farm will receive the 

detected state.  Poisson Distribution with means varied 

between low and high levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance4:DetectionProbability[][][]:Gen
eralSurv_Dairy_after

0.90 0.8 0.99 GeneralSurv_Dairy_after:   A function describing the 

probability of an infected farm being detected at each 

visit by the number of time periods since the farm was 

infected.  In our case, the function is constant, but 

would vary between the Lo and Hi values shown.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.
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Surveillance5:VisitDelay:ControlArea 2.75 0.5 5 Surv_ControlArea:  A probability distribution describing 

the number of time periods that will pass before a farm 

is visited after being placed on the surveillance list 

following a detected farm in the area.  Poisson 

Distribution with means varied between low and high 

levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance5:VisitFrequency:ControlArea 4.00 1 7 Surv_ControlArea:  A probability distribution describing 

the number of time periods that will pass between visits 

to a farm following the first visit (described by the 

VisitDelay) while a farm is on the surveillance list.  

Poisson Distribution with means varied between low and 

high levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance5:DelayToDetection:ControlAre
a

1.25 0.5 2 Surv_ControlArea:  A probability distribution returning 

the number of time periods from when the visit occurred 

to when that farm will receive the detected state.  

Poisson Distribution with means varied between low and 

high levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance5:DetectionProbability[][][]:Con
trolArea

0.90 0.8 0.99 Surv_ControlArea:   A function describing the probability 

of an infected farm being detected at each visit by the 

number of time periods since the farm was infected.  In 

our case, the function is constant, but would vary 

between the Lo and Hi values shown.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance5:DetectionProbability[][][shee
p]:ControlArea

0.83 0.7 0.95 Surv_ControlArea:   A function describing the probability 

of an infected Sheep farm being detected at each visit by 

the number of time periods since the farm was infected.  

In our case, the function is constant, but would vary 

between the Lo and Hi values shown.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance6:VisitDelay:SurvZone 3.50 2 5 Surv_Zone:  A probability distribution describing the 

number of time periods that will pass before a farm is 

visited after being placed on the surveillance list 

following a detected farm in the area.  Poisson 

Distribution with means varied between low and high 

levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance6:VisitFrequency:SurvZone 4.50 2 7 Surv_Zone:  A probability distribution describing the 

number of time periods that will pass between visits to a 

farm following the first visit (described by the VisitDelay) 

while a farm is on the surveillance list.  Poisson 

Distribution with means varied between low and high 

levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance6:DelayToDetection:SurvZone 1.50 1 2 Surv_Zone:  A probability distribution returning the 

number of time periods from when the visit occurred to 

when that farm will receive the detected state.  Poisson 

Distribution with means varied between low and high 

levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance6:DetectionProbability[][][]:Sur
vZone

0.90 0.8 0.99 Surv_Zone:   A function describing the probability of an 

infected farm being detected at each visit by the number 

of time periods since the farm was infected.  In our case, 

the function is constant, but would vary between the Lo 

and Hi values shown.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance6:DetectionProbability[][][shee
p]:SurvZone

0.83 0.7 0.95 Surv_Zone:   A function describing the probability of an 

infected Sheep farm being detected at each visit by the 

number of time periods since the farm was infected.  In 

our case, the function is constant, but would vary 

between the Lo and Hi values shown.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance7:VisitDelay:Trace 4.00 1 7 Surv_Trace:  A probability distribution describing the 

number of time periods that will pass before a farm is 

visited after being placed on the surveillance list 

following a detected farm in the area.  Poisson 

Distribution with means varied between low and high 

levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance7:VisitFrequency:Trace 4.00 1 7 Surv_Trace:  A probability distribution describing the 

number of time periods that will pass between visits to a 

farm following the first visit (described by the VisitDelay) 

while a farm is on the surveillance list.  Poisson 

Distribution with means varied between low and high 

levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance7:DelayToDetection:Trace 3.00 1 5 Surv_Trace:  A probability distribution returning the 

number of time periods from when the visit occurred to 

when that farm will receive the detected state.  Poisson 

Distribution with means varied between low and high 

levels.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance7:DetectionProbability[][][]:Trac
e

0.90 0.8 0.99 Surv_Trace:   A function describing the probability of an 

infected farm being detected at each visit by the number 

of time periods since the farm was infected.  In our case, 

the function is constant, but would vary between the Lo 

and Hi values shown.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Surveillance7:DetectionProbability[][][shee
p]:Trace

0.83 0.7 0.95 Surv_Trace:   A function describing the probability of an 

infected Sheep farm being detected at each visit by the 

number of time periods since the farm was infected.  In 

our case, the function is constant, but would vary 

between the Lo and Hi values shown.

Based on SME opinion.  Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.

Tracing1:ProbMovementForgotten[][] 0.43 0.05 0.8 Tracing:   a probability that the infectious movement will 

be forgotten by the farmer and therefore never traced.  

Here, this is the same for all movement types.

Used a wide range to test importance of this factor

Tracing1:TracingDelay[][] 3.75 0.5 7 Tracing:   The mean of a Poisson distribution of the 

number of time periods it takes to trace the infectious 

movement.  Here, this is the same for all movement 

types.

Used a wide range to test importance of this factor

MovementRestriction1:ProbMovementRestri
cted:ControlArea

0.92 0.85 0.99 MovementControlControlArea:  The probability that the 

movement defined in this movement restriction, will be 

prevented.

Bates, et al (2003) showed predicted movement 

restriction disregard from 5‐12% of movements in the 

control area.  
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MovementRestriction2:ProbMovementRestri
cted:SurvZone

0.85 0.7 0.99 MovementControl_Surv:  The probability that the 

movement defined in this movement restriction, will be 

prevented.

Bates, et al (2003).  We estimated that restrictions 

outside of the control area may be disregarded at a 

higher percentage than within the control area.

Vaccination1:FarmClasses:DairyOnly 0 1 Vacc_Zone:  Binary.  If 0, then all cattle will be 

vaccinated.  If 1, only Dairy premises, Dairy calf ranches, 

and feedlots will be vaccinated.

Based on SME opinion.   Adapted from general guidelines 

provided by Pam Hullinger during personal conversation 

on 12 Apr 2012.  If there is a 1 here, this then applies to 

farm types  ("31 | 32 | 33 | 51 | 53 | 73").   

MovementRestriction3:ProbMovementRestri
cted:StopMarkets

0 0.995 StopMarkets:  Binary variable defining the movement 

restrictions put on the market will be set for all 

markets (hi value) or only markets in a control area or 

surveillance zone.

Tests whether shutting down all markets or only those in 

the control area is a better strategy.

Binary Variables
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APPENDIX B. INTERSPREADPLUS CONTROL FILE 

;InteSpread Plus Control File Editor v2 
;Created: 4/23/2012 4:39:57 PM 
 
[Model] 
IterationCount=100 
TimePeriodCount=100 
Seed=1234 
RandomGeneratorName=C 
MaxInfectedFarms=7700 
UserDefinedStateCount=14 
FarmFileCount=1 
ContactLocationsCount=1 
SetStateCount=1 
MovementTypeCount=18 
RouteCount=0 
FixedRouteCount=0 
LocalSpreadCount=1 
AirborneSpreadCount=0 
RecrudescenceCount=0 
InfectivityCount=1 
ZoneCount=5 
ResourceCount=3 
DepopulationCount=1 
VaccinationCount=1 
SurveillanceCount=7 
TracingCount=1 
MovementRestrictionCount=3 
MovementStandstillCount=0 
RestockingCount=0 
OutputCount=6 
UserDefinedState1=in_control_area 
UserDefinedState2=processing_depop 
UserDefinedState3=depopulated 
UserDefinedState4=delayed_depop 
UserDefinedState5=in_vacc_zone 
UserDefinedState6=processing_vacc 
UserDefinedState7=vaccinated 
UserDefinedState8=delayed_vacc 
UserDefinedState9=in_surv_zone 
UserDefinedState10=waiting_depop 
UserDefinedState11=waiting_vacc 
UserDefinedState12=likeDairy_beforeDetect 
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UserDefinedState13=likeDairy_afterDetect 
UserDefinedState14=likeDairy 
 
[FarmFile1] 
Pathname=.\CalFarmFinal_withDensity.txt 
NumberOfColumns=17 
Column1=farmid 
Column2=farm_class 
Column3=user_defined FIPS_Code long 
Column4=user_defined UTM_Zone double 
Column5=animals cattle 
Column6=animals swine 
Column7=animals sheep 
Column8=animals goat 
Column9=animals other 
Column10=user_defined Type_Name string 
Column11=user_defined premise_3k long 
Column12=user_defined premise_10k long 
Column13=user_defined premise_20k long 
Column14=user_defined animal_3k long 
Column15=user_defined animal_10k long 
Column16=user_defined animal_20k long 
Column17=coordinates 
 
[ContactLocations1] 
ContactLocationsName=Markets_Combined 
Pathname=.\CAMarket_combined.txt 
 
[EpidemicHistory] 
StateFileName=.\STATE_Port_LA11.txt 
HistoryEndTimePeriod=1 
InfectedFarmHandling=include_always 
 
[SetState1] 
TimePeriod=1 
Coordinates=.\ZoneCalUTM.txt 
FarmClasses=31 | 32 | 33 | 51 | 53 | 73 
ProportionOfFarms=1.0 
StatesToSet=likeDairy 
 
[MovementType1] 
MovementName=Movement_Farm_Farm_Backyard 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
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NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.615,0.11,0.025,0.06,0.01,0.035,0.01,0,0.135;0,0,19000,39000,
59000,79000,99000,119000,139000,159000,179000 
ProbabilityOfTransmission=Constant 0.2 
NumberPerTimePeriod[114|214|314|24|34]=Poisson 0.049 
 
[MovementType2] 
MovementName=Movement_Farm_Farm_Goat 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.365,0.16,0.09,0.035,0.01,0,0.015,0.025,0.3;0,0,19000,39000,5
9000,79000,99000,119000,139000,159000,179000 
ProbabilityOfTransmission=Constant 0.2 
NumberPerTimePeriod[310]=Poisson 0.115 
 
[MovementType3] 
MovementName=Movement_Farm_Farm_Sheep 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.365,0.16,0.09,0.035,0.01,0,0.015,0.025,0.3;0,0,19000,39000,5
9000,79000,99000,119000,139000,159000,179000 
ProbabilityOfTransmission=Constant 0.2 
NumberPerTimePeriod[211|213]=Poisson 0.154 
 
[MovementType4] 
MovementName=Movement_Farm_Farm_BeefS 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.39,0.22,0.125,0.055,0.025,0.01,0.02,0.015,0.14;0,0,19000,390
00,59000,79000,99000,119000,139000,159000,179000 
ProbabilityOfTransmission=Constant 0.338 
NumberPerTimePeriod[51|61]=Poisson 0.02 
 
[MovementType5] 
MovementName=Movement_Farm_Farm_BeefL 
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TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.39,0.22,0.125,0.055,0.025,0.01,0.02,0.015,0.14;0,0,19000,390
00,59000,79000,99000,119000,139000,159000,179000 
ProbabilityOfTransmission=Constant 0.338 
NumberPerTimePeriod[53|63]=Poisson 0.038 
 
[MovementType6] 
MovementName=Movement_Farm_Farm_DairyS 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.57,0.255,0.035,0.01,0.005,0.01,0.005,0.005,0.105;0,0,19000,3
9000,59000,79000,99000,119000,139000,159000,179000 
ProbabilityOfTransmission=Constant 0.338 
NumberPerTimePeriod[31|32]=Poisson 0.164 
 
[MovementType7] 
MovementName=Movement_Farm_Farm_DairyL 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.57,0.255,0.035,0.01,0.005,0.01,0.005,0.005,0.105;0,0,19000,3
9000,59000,79000,99000,119000,139000,159000,179000 
ProbabilityOfTransmission=Constant 0.338 
NumberPerTimePeriod[33]=Poisson 0.298 
 
[MovementType8] 
MovementName=Movement_Farm_Farm_Calf_HeiferS 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.41,0.145,0.205,0,0,0,0.02,0,0.22;0,0,19000,39000,59000,7900
0,99000,119000,139000,159000,179000 
ProbabilityOfTransmission=Constant 0.338 
NumberPerTimePeriod[41]=Poisson 0.017 
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[MovementType9] 
MovementName=Movement_Farm_Farm_Calf_HeiferL 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.41,0.145,0.205,0,0,0,0.02,0,0.22;0,0,19000,39000,59000,7900
0,99000,119000,139000,159000,179000 
ProbabilityOfTransmission=Constant 0.338 
NumberPerTimePeriod[43|73]=Poisson 0.657 
 
[MovementType10] 
MovementName=Movement_Farm_Farm_SwineS 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.315,0.29,0.02,0.05,0.12,0.045,0.015,0,0.145;0,0,19000,39000,
59000,79000,99000,119000,139000,159000,179000 
ProbabilityOfTransmission=Constant 0.9999 
NumberPerTimePeriod[121|131|151|161]=Poisson 0.088 
 
[MovementType11] 
MovementName=Movement_Farm_Farm_SwineL 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.315,0.29,0.02,0.05,0.12,0.045,0.015,0,0.145;0,0,19000,39000,
59000,79000,99000,119000,139000,159000,179000 
ProbabilityOfTransmission=Constant 0.9999 
NumberPerTimePeriod[153|163]=Poisson 0.334 
 
[MovementType12] 
MovementName=Movement_market-farm 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 0 
DestinationType=farm 
RestrictOnAnimals=N 
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MovementDistance=1,0,0.383,0.202,0.119,0.061,0.013,0.069,0.04,0.021,0.092;0,0,19000
,39000,59000,79000,99000,119000,139000,159000,179000 
ProbabilityOfTransmission=Constant 0.8 
MaxResampleAttempts=0 
 
[MovementType13] 
MovementName=Movement_farm-market 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Poisson 0.1 
NumberOfDirectContacts=Constant 1 
DestinationType=contact_location 
ContactLocationControlName=Markets_Combined 
RestrictOnAnimals=N 
MovementDistance=1,0,0.546,0.216,0.167,0.018,0.005,0.014,0.004,0.006,0.024;0,0,1900
0,39000,59000,79000,99000,119000,139000,159000,179000 
ProbabilityOfTransmission=Constant 0.8 
MaxResampleAttempts=0 
SourceOfSecondaryContacts=source 
NumberOfSecondaryContacts[Movement_market-farm]=Poisson 1 
 
[MovementType14] 
MovementName=IDMovement_Size1 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.44,0.3283,0.1367,0.055,0.011,0.029;0,0,9000,19000,29000,39
000,49000,59000 
ProbabilityOfTransmission=Constant 0.338 
NumberPerTimePeriod[41]=Poisson 0.005 
 
[MovementType15] 
MovementName=IDMovement_Size2 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.44,0.3283,0.1367,0.055,0.011,0.029;0,0,9000,19000,29000,39
000,49000,59000 
ProbabilityOfTransmission=Constant 0.338 
NumberPerTimePeriod[24|34|114|214|314|310|211|213|51|61|53|63|121|131|151|161]=Poi
sson 0.0252 
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[MovementType16] 
MovementName=IDMovement_Size3 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.44,0.3283,0.1367,0.055,0.011,0.029;0,0,9000,19000,29000,39
000,49000,59000 
ProbabilityOfTransmission=Constant 0.338 
NumberPerTimePeriod[153|163]=Poisson 0.1853 
 
[MovementType17] 
MovementName=IDMovement_Size4 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.44,0.3283,0.1367,0.055,0.011,0.029;0,0,9000,19000,29000,39
000,49000,59000 
ProbabilityOfTransmission=Constant 0.338 
NumberPerTimePeriod[31|32|43|73]=Poisson .4294 
 
[MovementType18] 
MovementName=IDMovement_Size5 
TimePeriodStart=1 
TimePeriodStop=1000 
NumberPerTimePeriod=Constant 0 
NumberOfDirectContacts=Constant 1 
DestinationType=farm 
MovementDistance=1,0,0.44,0.3283,0.1367,0.055,0.011,0.029;0,0,9000,19000,29000,39
000,49000,59000 
ProbabilityOfTransmission=Constant 0.338 
NumberPerTimePeriod[33]=Poisson .9517 
 
[LocalSpread1] 
TimePeriodStart=1 
TimePeriodStop=1000 
POTOffsetRelativeTo=clinical_signs 
ProbabilityOfTransmission=7,1000,2000,3000;-
1,0,0,0;0,0.013,0.003,0.001;1,0.039,0.009,0.003;2,0.052,0.012,0.004;3,0.052,0.012,0.004
;4,0.052,0.012,0.004;5,0.052,0.012,0.004 
RelativeSusceptibility[swine]=0.01 
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RelativeSusceptibility[sheep]=0.05 
RelativeSusceptibility[goat]=0.05 
RelativeSusceptibility[cattle]=1.0 
 
[Infectivity1] 
TimePeriodStart=1 
TimePeriodStop=1000 
TimeToClinicalSigns=Lookup 
1,2,3,4,5,6,7,8,9,11,12,16,17;0,0.035,0.158,0.333,0.772,0.789,0.825,0.877,0.912,0.947,0.
965,0.982,1 
InfectivityRelativeTo=clinical_signs 
WithinFarmSpreadProb=1.0 
Infectivity[][][]=Table 
1,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33;0,1,0.941,0.882,0.823,0.764,0.
705,0.646,0.587,0.528,0.469,0.41,0.351,0.292,0.233,0.174,0.115,0.056,0 
 
[Zone1] 
ZoneName=ZoneCalifornia 
ZoneType=explicit 
IncludeEntireFarm=N 
TimePeriodStartReference=simulation_start 
TimePeriodStopReference=simulation_start 
ChangeCount=1 
TimePeriodStart1=1 
TimePeriodStop1=1000 
Coordinates1=.\ZoneCalUTM.txt 
 
[Zone2] 
ZoneName=Zone_ControlArea 
ZoneType=radial 
FarmState=in_control_area 
UseFarmCentroid=Y 
IncludeEntireFarm=N 
ChangeCount=1 
TimePeriodStart1=1 
TimePeriodStop1=1000 
InsideRadius1=0 
OutsideRadius1=3000 
 
[Zone3] 
ZoneName=Zone_Vaccinate 
ZoneType=radial 
FarmState=in_vacc_zone 
UseFarmCentroid=Y 
IncludeEntireFarm=N 
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ChangeCount=1 
TimePeriodStart1=1 
TimePeriodStop1=1000 
InsideRadius1=0 
OutsideRadius1=3000 
 
[Zone4] 
ZoneName=Zone_Surv 
ZoneType=radial 
FarmState=in_surv_zone 
UseFarmCentroid=Y 
IncludeEntireFarm=N 
ExcludeFarmsInZones=Zone_ControlArea 
ChangeCount=1 
TimePeriodStart1=1 
TimePeriodStop1=1000 
InsideRadius1=0 
OutsideRadius1=3000 
 
[Zone5] 
ZoneName=Zone_likeDairy 
ZoneType=explicit 
FarmState=likeDairy 
TimePeriodStartReference=simulation_start 
TimePeriodStopReference=first_detection 
ChangeCount=1 
TimePeriodStart1=1 
TimePeriodStop1=1 
Coordinates1=.\ZoneCalUTM.txt 
 
[Resource1] 
ResourceName=DepopResource 
WaitingFarmState=waiting_depop 
ProcessingFarmState=processing_depop 
CompletedFarmState=depopulated 
DelayedFarmState=delayed_depop 
TimePeriodToDelayedState=1 
ActionOption=depopulation 
FarmListOption=single_list 
FarmProcessingOption=animals_per_time_period 
ChangeCount=2 
TimePeriodStart1=1 
TimePeriodStop1=9 
cattlePerTimePeriod1=2000 
goatPerTimePeriod1=2000 
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otherPerTimePeriod1=2000 
sheepPerTimePeriod1=2000 
swinePerTimePeriod1=2000 
TimePeriodStart2=10 
TimePeriodStop2=1000 
cattlePerTimePeriod2=20000 
goatPerTimePeriod2=20000 
otherPerTimePeriod2=20000 
sheepPerTimePeriod2=20000 
swinePerTimePeriod2=20000 
 
[Resource2] 
ResourceName=VaccinationResource 
WaitingFarmState=waiting_vacc 
ProcessingFarmState=processing_vacc 
CompletedFarmState=vaccinated 
DelayedFarmState=delayed_vacc 
TimePeriodToDelayedState=1 
ActionOption=vaccination 
FarmListOption=single_list 
FarmProcessingOption=animals_per_time_period 
ChangeCount=2 
TimePeriodStart1=1 
TimePeriodStop1=9 
cattlePerTimePeriod1=2000 
goatPerTimePeriod1=2000 
otherPerTimePeriod1=2000 
sheepPerTimePeriod1=2000 
swinePerTimePeriod1=2000 
TimePeriodStart2=10 
TimePeriodStop2=1000 
cattlePerTimePeriod2=20000 
goatPerTimePeriod2=20000 
otherPerTimePeriod2=20000 
sheepPerTimePeriod2=20000 
swinePerTimePeriod2=20000 
 
[Resource3] 
ResourceName=SurvResource 
ActionOption=depopulation 
SurveillanceControl=Surv_ControlArea 
FarmListOption=single_list 
FarmProcessingOption=farms_per_time_period 
ChangeCount=1 
TimePeriodStart1=1 
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TimePeriodStop1=1000 
FarmsPerTimePeriod1=0 
 
[Depopulation1] 
ControlName=Depop_Detected 
ActivationOption=detected_farm 
TimePeriodStartReference=simulation_start 
TimePeriodStopReference=simulation_start 
FarmSelectionOption=detected_farm 
ActionResource=DepopResource 
WaitingFarmState=waiting_depop 
ProcessingFarmState=processing_depop 
CompletedFarmState=depopulated 
DelayedFarmState=delayed_depop 
TimePeriodToDelayedState=1 
 
[Vaccination1] 
ControlName=Vacc_Zone 
ActivationOption=detected_farm 
TimePeriodStartReference=simulation_start 
TimePeriodStopReference=simulation_start 
FarmSelectionOption=zone 
SelectionZone=Zone_Vaccinate 
SelectionZoneFarmSortOrder=outer_to_inner 
FarmClasses=31 | 32 | 33 | 51 | 53 | 73 
AnimalTypes=cattle 
ActionResource=VaccinationResource 
WaitingFarmState=waiting_vacc 
ProcessingFarmState=processing_vacc 
CompletedFarmState=vaccinated 
DelayedFarmState=delayed_vacc 
TimePeriodToDelayedState=1 
RemoveDetectedFarms=N 
ImmunityFunction=Table 1,0,4,15;0,0,0.1,0.05 
 
[Surveillance1] 
ControlName=GeneralSurveillance 
ActivationOption=time_period 
TimePeriodStartReference=simulation_start 
TimePeriodStart=1 
TimePeriodStopReference=first_detection 
TimePeriodStop=1 
SelectionZone=ZoneCalifornia 
SelectionProbability=0.65 
VisitDelay=Poisson 2 
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VisitFrequency=Poisson 7 
VisitDuration=Constant 1000 
DelayToDetection=Poisson 3 
DetectionRelativeTo=Clinical_signs 
DetectionProbability[][][]=Constant 0.95 
DetectionProbability[][][sheep]=Constant 0.5 
 
[Surveillance2] 
ControlName=GeneralSurveillance_AfterDetect 
ActivationOption=time_period 
TimePeriodStartReference=first_detection 
TimePeriodStart=1 
TimePeriodStopReference=first_detection 
TimePeriodStop=1000 
SelectionZone=ZoneCalifornia 
SelectionProbability=0.85 
VisitDelay=Poisson 2 
VisitFrequency=Poisson 7 
VisitDuration=Constant 1000 
DelayToDetection=Poisson 3 
DetectionRelativeTo=Clinical_signs 
DetectionProbability[][][]=Constant 0.95 
DetectionProbability[][][sheep]=Constant 0.85 
 
[Surveillance3] 
ControlName=GeneralSurv_Dairy_before 
ActivationOption=time_period 
TimePeriodStartReference=simulation_start 
TimePeriodStart=1 
TimePeriodStopReference=first_detection 
TimePeriodStop=1 
SurveillanceFarmState=likeDairy_beforeDetect 
SelectionZone=Zone_likeDairy 
SelectionProbability=0.999 
VisitDelay=Poisson 1 
VisitFrequency=Poisson 2 
VisitDuration=Constant 1000 
DelayToDetection=Poisson 3 
DetectionRelativeTo=Clinical_signs 
DetectionProbability[][][]=Constant 0.5 
 
[Surveillance4] 
ControlName=GeneralSurv_Dairy_after 
ActivationOption=time_period 
TimePeriodStartReference=first_detection 
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TimePeriodStart=1 
TimePeriodStopReference=first_detection 
TimePeriodStop=1000 
SurveillanceFarmState=likeDairy_afterDetect 
SelectionZone=Zone_likeDairy 
SelectionProbability=0.999 
VisitDelay=Poisson 0.5 
VisitFrequency=Poisson 1 
VisitDuration=Constant 1000 
DelayToDetection=Poisson 1 
DetectionRelativeTo=Clinical_signs 
DetectionProbability[][][]=Constant 0.95 
 
[Surveillance5] 
ControlName=Surv_ControlArea 
ActivationOption=detected_farm 
TimePeriodStartReference=first_detection 
TimePeriodStart=1 
TimePeriodStopReference=first_detection 
TimePeriodStop=1000 
SurveillanceFarmState=in_control_area 
SelectionZone=Zone_ControlArea 
SelectionProbability=0.99 
VisitDelay=Poisson 2 
VisitFrequency=Poisson 3 
VisitDuration=Constant 1000 
DelayToDetection=Poisson 1 
DetectionRelativeTo=Clinical_signs 
DetectionProbability[][][]=Constant 0.99 
DetectionProbability[][][sheep]=Constant 0.9 
 
[Surveillance6] 
ControlName=Surv_Zone 
ActivationOption=detected_farm 
TimePeriodStartReference=first_detection 
TimePeriodStart=1 
TimePeriodStopReference=first_detection 
TimePeriodStop=1000 
SurveillanceFarmState=in_surv_zone 
SelectionZone=Zone_Surv 
SelectionProbability=0.9 
VisitDelay=Poisson 3 
VisitFrequency=Poisson 7 
VisitDuration=Constant 1000 
DelayToDetection=Poisson 2 
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DetectionRelativeTo=Clinical_signs 
DetectionProbability[][][]=Constant 0.99 
DetectionProbability[][][sheep]=Constant 0.9 
 
[Surveillance7] 
ControlName=Surv_Trace 
ActivationOption=time_period 
TimePeriodStartReference=first_detection 
TimePeriodStart=1 
TimePeriodStopReference=first_detection 
TimePeriodStop=1000 
SelectionZone=ZoneCalifornia 
SelectionProbability=0.75 
VisitDelay=Poisson 2 
VisitFrequency=Poisson 5 
VisitDuration=Constant 1000 
DelayToDetection=Poisson 3 
DetectionRelativeTo=Clinical_signs 
DetectionProbability[][][]=Constant 0.95 
DetectionProbability[][][sheep]=Constant 0.85 
 
[Tracing1] 
ControlName=Tracing 
TimePeriodStartReference=first_detection 
TimePeriodStart=2 
TimePeriodStopReference=first_detection 
TimePeriodStop=1000 
TracingRequired[][]=Y 
ProbMovementForgotten[][]=0.2 
TracingDelay[][]=Poisson 2 
SurveillanceControls[][]=Surv_Trace 
 
[MovementRestriction1] 
ControlName=MovementControlControlArea 
TimePeriodStartReference=first_detection 
TimePeriodStart=1 
TimePeriodStopReference=first_detection 
TimePeriodStop=1000 
MovementTypes=IDMovement_Size1 IDMovement_Size2 IDMovement_Size3 
IDMovement_Size4 IDMovement_Size5 Movement_farm-market 
Movement_Farm_Farm_Backyard Movement_Farm_Farm_BeefL 
Movement_Farm_Farm_BeefS Movement_Farm_Farm_Calf_HeiferL 
Movement_Farm_Farm_Calf_HeiferS Movement_Farm_Farm_DairyL 
Movement_Farm_Farm_DairyS Movement_Farm_Farm_Goat 
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Movement_Farm_Farm_Sheep Movement_Farm_Farm_SwineL 
Movement_Farm_Farm_SwineS Movement_market-farm 
SourceFarmStates=in_control_area 
DestinationFarmStates=in_control_area 
ProbMovementRestricted=0.99 
 
[MovementRestriction2] 
ControlName=MovementControl_Surv 
TimePeriodStartReference=first_detection 
TimePeriodStart=1 
TimePeriodStopReference=first_detection 
TimePeriodStop=1000 
MovementTypes=IDMovement_Size1 IDMovement_Size2 IDMovement_Size3 
IDMovement_Size4 IDMovement_Size5 Movement_farm-market 
Movement_Farm_Farm_Backyard Movement_Farm_Farm_BeefL 
Movement_Farm_Farm_BeefS Movement_Farm_Farm_Calf_HeiferL 
Movement_Farm_Farm_Calf_HeiferS Movement_Farm_Farm_DairyL 
Movement_Farm_Farm_DairyS Movement_Farm_Farm_Goat 
Movement_Farm_Farm_Sheep Movement_Farm_Farm_SwineL 
Movement_Farm_Farm_SwineS Movement_market-farm 
SourceFarmStates=in_surv_zone 
DestinationFarmStates=in_surv_zone 
ProbMovementRestricted=0.9 
 
[MovementRestriction3] 
ControlName=StopMarkets 
TimePeriodStartReference=first_detection 
TimePeriodStart=2 
TimePeriodStopReference=simulation_start 
TimePeriodStop=1000 
MovementTypes=Movement_farm-market Movement_market-farm 
SourceFarmStates=!detected | detected 
DestinationFarmStates=!detected | detected 
ProbMovementRestricted=0.0 
 
[Output1] 
Filename=.\data_IDFW_control12_infected_0.txt 
ReportType=FarmDetail 
FarmDetailType=specific_state 
TriggerState=infected 
NumberOfColumns=3 
Column1=farm_id 
Column2=section_name 
Column3=coordinate 
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[Output2] 
Filename=.\data_IDFW_control12_in_control_area_0.txt 
ReportType=FarmDetail 
FarmDetailType=specific_state 
TriggerState=in_control_area 
NumberOfColumns=1 
Column1=farm_id 
 
[Output3] 
Filename=.\data_IDFW_control12_in_vacc_zone_0.txt 
ReportType=FarmDetail 
FarmDetailType=specific_state 
TriggerState=in_vacc_zone 
NumberOfColumns=1 
Column1=farm_id 
 
[Output4] 
Filename=.\data_IDFW_control12_in_surv_zone_0.txt 
ReportType=FarmDetail 
FarmDetailType=specific_state 
TriggerState=in_surv_zone 
NumberOfColumns=1 
Column1=farm_id 
 
[Output5] 
Filename=.\data_IDFW_control12_depopulated_0.txt 
ReportType=FarmDetail 
FarmDetailType=specific_state 
TriggerState=depopulated 
NumberOfColumns=1 
Column1=farm_id 
 
[Output6] 
Filename=.\data_IDFW_control12_detected_0.txt 
ReportType=FarmDetail 
FarmDetailType=specific_state 
TriggerState=detected 
NumberOfColumns=2 
Column1=farm_id 
Column2=section_name 
 
;Checksum=1760877 
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